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ПРЕДИСЛОВИЕ


Методические указания для студентов по выполнению практических работ  адресованы  студентам очной, заочной и заочной с элементами дистанционных технологий формы обучения.


Методические указания созданы в помощь для работы на занятиях, подготовки к практическим работам, правильного составления отчетов.


Приступая к выполнению практической работы, необходимо внимательно прочитать цель работы, ознакомиться с требованиями к уровню подготовки в соответствии с федеральными государственными стандартами (ФГОС), краткими теоретическими сведениями, выполнить задания работы, ответить на контрольные вопросы для закрепления теоретического материала и сделать выводы. 


Отчет о практической работе необходимо выполнить и сдать в срок, установленный преподавателем. 

Наличие положительной оценки по практическим работам необходимо для допуска к экзамену, поэтому в случае отсутствия студента на уроке по любой причине или получения неудовлетворительной оценки за практическую  необходимо найти время для ее выполнения или пересдачи.

Правила выполнения практических работ


1. Студент должен прийти на практическое занятие подготовленным к выполнению практической работы.


2. После проведения практической работы студент должен представить отчет о проделанной работе.


3. Отчет о проделанной работе следует выполнять в журнале практических работ на листах формата А4 с одной стороны листа.

Оценку по практической работе студент получает, если:

- студентом работа выполнена в полном объеме;

- студент может пояснить выполнение любого этапа работы;

- отчет выполнен в соответствии с требованиями к выполнению работы;

- студент отвечает на контрольные вопросы на удовлетворительную оценку и выше.


Зачет по выполнению практических работ студент получает при условии выполнения всех предусмотренных программой работ после сдачи журнала с отчетами по работам и оценкам.

Внимание! Если в процессе подготовки к практическим работам или при решении задач возникают вопросы, разрешить которые самостоятельно не удается, необходимо обратиться к преподавателю для получения разъяснений или указаний в дни проведения дополнительных занятий. 

Обеспеченность занятия:
1. Учебно-методическая литература:

1. Богомолов Н.В. Практические занятия по математике: учебн. пособие для СПО /Н.В.Богомолов.-11-е изд., перераб. и доп.- М: Издательство Юрайт, 2016. -495с.  Серия: Профессиональное образование.

            2. Спирина М.С Дискретная математика: учебник для студ. учреждений сред. проф.образования/ М.С. Спирина, П.А. Спирин.- 11-е изд., стер. – М.: Издательский центр «Академия», 2015. -368 с.

            3. Спирина М.С., Спирин П.А. Теория вероятностей и математическая статистика: учебник для студ. Учреждений сред. проф.образования –М.: ИЦ «Академия», 2016.-352 с.

4. Григорьев В.П. Элементы высшей математики: Учебник для студ. учреждений среднего проф. образования. 8-е изд., стер. / В.П.Григорьев, Ю.А.Дубинский - М.: Издательский центр «Академия», 2014. – 320 с. 
        Дополнительная литература:

5.Шипачев В.С. Задачник по высшей математике:  учеб.пособие /В.С.Шипачев.-10-е изд.,стереотип.-М.:ИНФРА-М,2017.-304с.-(Высшее образование).  ISBN 978-5-16-010071-5(print),  ISBN 978-5-16-101831-6(online)
 6. В.П. Омельченко Математика: Учебное пособие/ В.П. Омельченко, Э.В. Курбатова. –Изд. 5-е изд., испр. –Ростов н/Д: Феникс, 2014-380 с.

          7.  Григорьев В.П. Сборник задач по высшей математике: Учеб. пособие для студентов учрежд. СПО / В.П.Григорьев, Т.Н.Сабурова. – М.: Издательский центр «Академия», 2011. – 160 с.

2. Интернет ресурсы:

1. Электронно-библиотечная система. [Электронный ресурс] – режим доступа: http://znanium.com/ (2002-2018)

      3. Технические средства обучения:

      -  калькулятор  инженерный.

Порядок выполнения отчета по практической работе

1. Ознакомиться с теоретическим материалом по практической работе.

2. Выполнить предложенное задание согласно варианту по списку 

группы.

3. Продемонстрировать результаты выполнения предложенных заданий 

преподавателю.

4. Составить по практической работе отчет.

5. Ответить на контрольные вопросы.

Практическая работа № 1
«Действия над матрицами. Вычисление определителей»
Учебная цель:   научиться выполнять операции над матрицами
Образовательные результаты, заявленные во ФГОС:
Студент должен 

уметь: 

           - выполнять операции над матрицами  и решать системы  линейных уравнений;

знать: 

           - основы линейной алгебры и  аналитической геометрии.
Краткие теоретические и учебно-методические материалы по теме практической работы

     Матрицей называется прямоугольная таблица чисел, содержащая m строк одинаковой длины (или n столбцов одинаковой длины). Матрица записывается в виде
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или, сокращенно, 
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Матрица, у которой число строк равно числу столбцов, называется квадратной. Квадратную матрицу размера 
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- го порядка.Квадратная матрица, у которой все элементы, кроме элементов глав​ной диагонали, равны нулю, называется диагональной. Диагональная матрица, у которой каждый элемент главной диагонали  равен единице, называется единичной. Обозначается буквой E. Квадратная матрица называется треугольной, если все элементы, расположенные по одну сторону от главной диагонали, равны нулю. Матрица, все элементы которой равны нулю, называется нулевой. Обозначается буквой О. Матрица, содержащая всего один столбец или одну строку называется вектором (или вектор- столбец, или вектор-строка соответственно). Их вид 
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Матрица, полученная из данной заменой каждой ее строки столбцом с тем же номером, называется матрицей транспонированной  к  данной и обозначается 
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. Транспонированной матрица обладает следующим свойством: 
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Действия над матрицами
Суммой двух матриц 
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   Операция сложения матриц вводится только для матриц одинаковых размеров.

Произведением матрицы 
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     Матрица 
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 называется противоположной матрице А. Разность матриц А-В можно определить так: А-В =А+(-В). Операции сложения матриц и умножения матрицы на число обладают следующими свойствами:
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где  A, B, C – матрицы, 
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 и 
[image: image43.wmf]b

 - числа.

  Элементарными преобразованиями матриц являются:
• перестановка местами двух параллельных рядов матрицы;
• умножение всех элементов ряда матрицы на число, отличное от нуля;
• прибавление ко всем элементам ряда матрицы соответствующих эле​ментов параллельного ряда, умноженных на одно и то же число.
     Две матрицы А и В называются эквивалентными, если одна из них получается из другой с помощью элементарных преобразований. Записы​вается А ~ В.  
          Произведением матрицы 
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т. е. элемент i-й строки и k-го столбца матрицы произведения С равен сумме произведений элементов i-й строки матрицы А на соответствующие элементы k-го столбца матрицы В. Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы.    Т.е. если матрицы А и В квадратные одного размера, то произведения АВ и ВА всегда существуют.

      Квадратной матрице А порядка n можно сопоставить число det А (или 
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), называемое ее определителем, следующим образом
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       Минором некоторого элемента 
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 определителя n-го порядка назы​вается определитель  (n–1)-го порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент. Обозначается 
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    Алгебраическим дополнением элемента 
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 определителя называется его  минор, взятый со знаком «плюс», если сумма (
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     Определитель матрицы равен сумме произведений элементов некоторой строки (или столбца) на соответствующие им алгебраические дополнения.  В случае определителей 3-го порядка получим, что
                                      
[image: image65.wmf].

13

13

12

12

11

11

33

32

31

23

22

21

13

12

11

A

a

A

a

A

a

a

a

a

a

a

a

a

a

a

×

+

×

+

×

=

=

D


   Квадратная матрица А называется невырожденной, если определитель
∆ = det A≠0. В противном случае (∆ = 0) матрица А называется вырожденной.

     Матрицей, союзной к матрице А, называется матрица

                                 A*= 
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где А
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 - алгебраическое дополнение элемента а
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 данной матрицы А.  Матрица А
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                                                  А·А
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где Е – единичная матрица того же порядка, что и матрица А. 

 Пусть А – невырожденная матрица

                                          A=
[image: image72.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

33

32

31

23

22

21

13

12

11

a

a

a

a

a

a

a

a

,  и  det A≠0.

 Тогда   A
[image: image73.wmf]1

-

=
[image: image74.wmf]
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Примеры по выполнению практической работы

Пример 1.  Найти сумму матриц А+В, если: 
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Решение: 
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Пример 2. Найти 2А, если   
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Решение: 
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Пример 3. Даны матрицы 
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 не определено, так как число столбцов матрицы А (их 3) не совпадает с числом строк матрицы В (их 2). При этом определено произведение 
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, которое считают следующим образом: 
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Пример 4.  Найти определитель матрицы 
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Решение: 
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Пример 5.   Вычислить определитель
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Пример 6. Найти А
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Решение:    
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Составим союзную матрицу. Для этого вычислим алгебраические дополнения:
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Союзная матрица будет следующей: 
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. Вычислим обратную матрицу:
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Проверкой  
[image: image106.wmf]Е

А

А

=

×

-

1

  убеждаемся, что обратная матрица найдена верно.
Задания для практического занятия:

Вариант 1: 
Даны матрицы А и В:  A=
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1. Найти матрицу C=2A-3B.
2. Найти произведение матриц AB; BA.
3. Вычислить определители матриц det A; det B.
4. Найти сумму и разность матриц:  A+ B, A-B.
5. Найти обратные матрицы A‾¹, B‾¹. Проверить правильность их нахождения умножением 
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Вариант 2:

Даны матрицы А и В:  A =
[image: image110.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

-

6

0

3

4

0

3

1

1

2

;
B =
[image: image111.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

-

1

1

0

0

2

4

4

3

1

.

1. Найти сумму и разность матриц:  A+ B, A-B.
2. Найти матрицу C=2A-3B.
3. Найти произведение матриц AB; BA.
4. Вычислить определители матриц det A; det B.
5. Найти обратные матрицы A‾ ¹, B‾ ¹. Проверить правильность их
нахождения умножением 
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Вариант 3:
Даны матрицы А и В:  A =
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1. Найти сумму и разность матриц:  A+ B, A-B.
2. Найти матрицу C=2A-3B.
3. Найти произведение матриц AB; BA.
4. Вычислить определители матриц det A; det B.
5. Найти обратные матрицы A‾ ¹, B‾ ¹. Проверить правильность их
нахождения умножением 
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Вариант 4:

Даны матрицы А и В:   A =
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1. Найти сумму и разность матриц:  A+ B, A-B.
2. Найти матрицу C=2A-3B.
3. Найти произведение матриц AB; BA.
4. Вычислить определители матриц det A; det B.
5. Найти обратные матрицы A‾ ¹, B‾ ¹. Проверить правильность их
нахождения умножением 
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Контрольные вопросы

1. Что называется матрицей? Дать определения основных понятий матрицы.
2. Какая матрица называется квадратной? Единичной?

3. Какие операции можно производить над матрицами?

4. Что такое определитель матрицы? 
5. Что такое минор и алгебраическое дополнение  элемента 
[image: image119.wmf]ij

a

 матрицы А?

6. Как найти союзную и обратную матрицы для матрицы А?

Практическая работа № 2

«Решение систем линейных уравнений »

Учебная цель:   научиться решать системы линейных уравнений различными 
методами
Образовательные результаты, заявленные во ФГОС:

Студент должен 

уметь: 

          - выполнять операции над матрицами  и решать системы  линейных уравнений.

знать: 

           - основы   линейной алгебры.
Краткие теоретические и учебно-методические материалы по теме практической работы

      Системой  линейных алгебраических уравнений, содержащей m уравнений и n неизвестных, называется система вида
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где числа 
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, называются коэффициентами системы, числа 
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 - свободными членами. Подлежат нахождению числа 
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. Такую систему удобно записывать в компактной матричной форме:
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здесь А – матрица коэффициентов системы, называемая основной матрицей:
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    Расширенной матрицей системы называется матрица 
[image: image132.wmf]A

, дополненная столбцом членов
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 Решением системы называется 
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 значений неизвестных 
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, при подстановке которых все уравнения системы обращаются в верные равенства.  Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.  Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если она имеет   более одного решения. В последнем случае каждое ее решение называется частным решением системы. Совокупность всех частных решений называется общим решением.  Решить систему – это значит выяснить, совместна она или не совместна и  если система совместна, значит найти ее общее решение.

   Две системы называются эквивалентными (равносильными), если они имеют одно и то же решение.  Эквивалентные системы чаще всего получаются, в частности, при элементарных преобразованиях системы при условии, что преобразования выполняются лишь над строками матрицы.

Матричный метод решения систем линейных уравнений
 Пусть дана система (1)  п линейных уравнений с п неизвестными  
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или в  матричной форме 
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 (2). Основная матрица А такой системы квадратная. Определитель этой матрицы
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называется главным определителем системы. Если определитель системы отличен от нуля, то система называется невырожденной. Умножая слева уравнение (2) на А-1 , получим, что решение данной системы уравнений в случае 
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 имеет вид 
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Формула (6) дает матричный метод решения системы (1)

Метод Крамера

Запишем матричное равенство (6) запишем в виде:
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или
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Отсюда следует, что              
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Но 
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по элементам первого столбца. Определитель 
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 получается из определителя 
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 путем замены первого столбца коэффициентов столбцом  свободных членов. Итак, 
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 получен из 
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 путем замены второго столбца коэффициентов столбцом  свободных членов, 
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называются формулами Крамера.

Метод Гаусса

Одним из наиболее универсальных и эффективных методов решений линейных алгебраических систем является метод Гаусса, состоящий в по​следовательном исключении неизвестных.         

Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду:
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где 
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 Коэффициенты 
[image: image159.wmf]ii

a

 называются главными элементами системы. На втором этапе (обратный ход) идет последовательно определении неизвестных из этой ступенчатой системы.

          Замечание 1. Если ступенчатая система оказывается треугольной, т. е. 
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, то исходная система (1) имеет единственное решение. Из последне​го уравнения находим 
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Примеры по выполнению практической работы

Пример 1. Решить систему уравнений матричным методом:
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Решение:    
[image: image165.wmf]=
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Составим союзную матрицу. Для этого вычислим алгебраические дополнения:
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9

4

4

3

3

1

)

1

(

2

2

22

-

=

-

-

=

-

×

-

=

+

А


  Союзная матрица будет следующей: 
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Найдем решение системы по формуле (6):
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Итак, решением системы будет тройка чисел (1; 2; -1).

[image: image1.jpg]


Пример 2. Решить систему методом Крамера:

                                                     3x1 +   x2 – 2x3 =  6;

                                                     5x1 – 3x2 + 2x3 = -4;

                                                     4x1 – 2x2 – 3x3 = -2.

Находим главный определитель системы:
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          3   1   -2

∆ =    5   -3   2  = 3∙(-3) ∙ (-3) + 1∙ 2∙ 4 + 5∙(-2) ∙ (-2) – 4∙(-3) ∙ (-2) – 5∙ 1∙(-3) – (-2) ∙ 2∙ 3=
         4   -2  -3

=  27 +8 +20 -24 + 15 + 12 = 58. 

Так как главный определитель системы не равен нулю, значит она совместа.   Находим определители: ∆x1, ∆x2, ∆x3. Определитель ∆x1 получается из главного определителя ∆ путём замены в нём первого столбца на столбец свободных членов.


             6    1  -2 

∆x1 =    -4   -3   2     = 54 – 4 – 16 + 12 – 12 + 24 = 58.

            -2  -2   -3

Т.к. ∆x1 отличен от нуля, значит решение системы единственное. Определитель ∆x2 получается из главного определителя ∆ путём замены в нём второго столбца на столбец свободных членов.


            3   6  -2

∆x2 =    5  -4   2    = 36 + 48 + 20 – 32 + 90 + 12 = 174.

            4  -2  -3

Определитель ∆x3 получается из главного определителя ∆ путём замены в нём третьего столбца на столбец свободных членов.

             3   1   6

∆x3 =    5  -3  -4     = 18 – 16 – 60 + 72 + 10 – 24 = 0.

            4  -2  -2

По формулам Крамера: x1 = 
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Итак, решением системы будет тройка чисел  (1; 3; 0).

Пример 3. Решить систему уравнений методом Гаусса:
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 Сначала из второго, третьего и четвертого уравнений исключаем неизвестное х1. Для этого из второго уравнения вычтем первое, затем первое уравнение умножим на 2 и вычтем почленно из третьего уравнения, а затем снова первое уравнение умножим на 3 и вычтем почленно из четвертого.  Получим следующую систему:
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 Исключим х2 из третьего и четвертого уравнений последней системы. Для этого сложим второе уравнение системы сначала с третьим, а затем с четвертым.  В результате получим равносильную систему:
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Теперь исключим переменную х3 из четвертого уравнения. Для этого третье уравнение умножим на 4, четвертое уравнение умножим на (-5) и сложим почленно полученные уравнения. Получим систему равносильную данной:
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 EMBED Equation.3  [image: image190.wmf]ï
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     Мы получили систему уравнений треугольного вида. Начинаем обратный ход. Из последнего уравнения находим х4=4, подставляем его в третье уравнение последней системы и находим х3=3; из второго уравнения системы находим х2=2, а из первого х1=1. Решением системы является четверка чисел (1; 2; 3; 4).

   Замечание 2. На практике удобнее работать не с системой (1), а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строка​ми. Удобно, чтобы коэффициент 
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 был равен 1 (можно уравнения переставить местами, либо разделить обе части уравнения на 
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Пример 4. Решить систему методом Гаусса:
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 Решение: в результате элементарных преобразований над расширенной матрицей системы

                         
[image: image194.wmf]
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Исходная система свелась к ступенчатой:
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Поэтому общее решение системы: 
[image: image197.wmf];
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[image: image198.wmf].

1

8

5

3

4

1

-

-

=

x

x

x


Если положить, например, 
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  найдем одно из частных решений этой системы 
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Пример 5. Решить систему методом Гаусса:
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Решение. Произведем элементарные преобразования над строчками расширенной матрицы системы:
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Полученная матрица соответствует системе
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Осуществляя обратный ход, находим 
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Задания для практического занятия:

Вариант 1
1. Матричным методом найти решение системы:

а)
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2. Решить систему методом Крамера:

а) 
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    1. Найти решение системы методом Гаусса:
 а)
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Вариант 2
1. Матричным методом найти решение системы:

а)
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2. Решить систему методом Крамера:

а) 
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3.Найти решение системы методом Гаусса:

а) 
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Вариант 3
1. Матричным методом найти решение системы:

а) 
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2. Решить систему методом Крамера:

 а)
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3. Найти решение системы методом Гаусса:

а)
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Вариант 4
1. Матричным методом найти решение системы:

а) 
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2. Решить систему методом Крамера:

 а)  
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3. Найти решение системы методом Гаусса:
 а)
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î

ï

í

ì

=

+

+

=

+

+

-

=

-

+

;

3

;

6

2

;

0

z

y

x

z

y

x

z

у

х

                   б) 
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Контрольные вопросы

1. Укажите общий вид системы n линейных уравнений с  n  неизвестными;
2.  Что значит решить систему уравнений?  
3. В чем суть матричного метода решения системы линейных уравнений? Перечислите формулы.

4. В чем заключается  метод  Крамера? Перечислите формулы Крамера.
5. Как реализуется метод Гаусса решения систем линейных уравнений?  
Практическая работа № 3
 «Вычисление производной функции»

Учебная цель:   научиться  вычислять производные функций, применяя  правила дифференцирования
Образовательные результаты, заявленные во ФГОС:

Студент должен 

уметь: 

- применять методы дифференциального и интегрального исчисления;

знать: 

- ос​нов​ные по​ня​тия и ме​то​ды диф​фе​рен​ци​аль​но​го и ин​те​граль​но​го ис​чис​ле​ния.
Краткие теоретические и учебно-методические материалы по теме практической работы

        Пусть функция ƒ (x) определена в некоторой окрестности точки x0.  Производной функции ƒ (x) в точке x0 называется отношение приращения функции ∆ƒ (x0) к  приращению аргумента ∆x при ∆x → 0, если этот предел существует, и обозначается ƒ’(x0).
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Производную функции y = ƒ (x), x є ( a;b ) в точке x обозначают ƒ’(x),  y’(x),
[image: image224.wmf]dx
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 , 
[image: image225.wmf]dx
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, причём все эти обозначения равноправны.  Операция нахождения производной называется дифференцированием функции.   Функция, имеющая производную в точке x0, называется дифференцируемой в этой точке. Функция, имеющая производную в каждой точке интервала (a;b), называется дифференцируемой на этом интервале; при этом производную ƒ’(x) можно рассматривать как функцию на (a ;b).

Таблица производных элементарных функций
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Правила дифференцирования
  На практике применяют  следующие  правила дифференцирования

                                1. 
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где u и υ обозначают дифференцируемые функции  переменной x,

 C - константа.

Дифференцирование сложной функции

Теорема.  Пусть  дана сложная функция 
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 дифференцируема в некоторой точке  х0, а функция 
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 определена на множестве значений функции 
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 в данной точке  х0 имеет производную, которая находится по формуле  
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Примеры по выполнению практической работы

Пример 1.  Вычислить 
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Решение:    
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Пример 2.  Вычислить   
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Решение:     
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Пример3.   Вычислить
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 Решение:

     1) 
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     2) данная функция является суперпозицией трех функций, поэтому имеем
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Задания для практического занятия:

Вариант 1

1. Вычислить производные следующих функций, пользуясь правилами

    дифференцирования:

    а) y = 3x3 – 6x2 + 3x + 5;
б) y = (x3 + 3х4) (2x2 – 7х5) ;
в) 
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2. Вычислить производные следующих функций, пользуясь правилом дифференцирования 

     сложной функции:

              1) 
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3. Вычислить  
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Вариант 2

1. Вычислить производные следующих функций, пользуясь правилами

    дифференцирования:

    а) y = 16 + 5x - 4x2 + x3;
б) y = (3x4 + 7x) (2x2 – 4x7) ;
в) 
[image: image261.wmf]4
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 2. Вычислить производные следующих функций, пользуясь правилом дифференцирования 

     сложной функции:

    1) 
[image: image262.wmf]4
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              4)    
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3.  Вычислить 
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Вариант 3

1. Вычислить производные следующих функций, пользуясь правилами

    дифференцирования:

    а) y = -7x3 + 6x2 + x - 13;    б) y = (3x4 - 3x2) (4 x3+ 5x-7) ;   в) 
[image: image270.wmf]1
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2. Вычислить производные следующих функций, пользуясь правилом дифференцирования 
     сложной функции:

             1)  
[image: image271.wmf]5
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3.  Вычислить 
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Вариант 4

1. Вычислить производные следующих функций, пользуясь правилами

    дифференцирования: 
    а) y = -3x3 + 4x2 + 11x – 18
 ;    б) y = (10x2 – 13x3) (2x + 7x3 - 5) ;       в) 
[image: image279.wmf]3
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2. Вычислить производные следующих функций, пользуясь правилом дифференцирования 

     сложной функции:

     1) 
[image: image280.wmf]7
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     4)    
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3. Вычислить 
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Контрольные вопросы

1. Что называется производной функции в точке?

2. Что такое дифференцирование? 

3. Какая функция называется дифференцируемой в точке?

4. Перечислите табличные производные.

5. Какие правила дифференцирования вы знаете?

Практическая работа № 4
 «Геометрический и физический смысл производной»

Учебная цель:   научиться решать задачи на геометрический и физический смысл производной, 

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

- применять методы дифференциального и интегрального исчисления;

знать: 

- ос​нов​ные по​ня​тия и ме​то​ды диф​фе​рен​ци​аль​но​го и ин​те​граль​но​го ис​чис​ле​ния.
Краткие теоретические и учебно-методические материалы по теме практической работы

        Геометрический смысл производной состоит в следующем: производная функции y = y (x) при данном значении аргумента x = x0 равна угловому коэффициенту касательной, проведённой к графику этой функции  в точке с абсциссой x0.:

                                           y' (x0) = tg α=k                                    (1)   


    Уравнение  касательной к графику  функции y = y (x) в точке М0 (x0 ; y0) имеет вид

                                              y = y0 + y’(x0) (x - x0)                                    (2)    

 Если y (x) имеет при x = x0   бесконечную производную, то уравнение касательной имеет вид:

                                      x = x0                                                        (3)

Физический смысл производной. Производная 
[image: image288.wmf])
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 от функции y = y (x), вычисленная при значении аргумента x = x0,  есть  скорость изменения этой функции относительно независимой переменной x в точке x = x0.  Тогда, если  зависимость между пройденным путём s и временем t при прямолинейном неравномерном движении материальной точки выражается формулой

s = s (t), то её мновенная скорость 
[image: image289.wmf])
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  в любой момент времени 
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 равна  производной пути по времени:
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При прямолинейном движении   материальной точки ускорение есть скорость изменения скорости,  то     
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Примеры по выполнению практической работы

Пример 1. Найти угол наклона и   уравнение касательной  к параболе y = 2x2 - 6x + 3 в точке М0 (1 ; -1).

Решение: Согласно формуле (1) вычислим угловой коэффициент касательной  - вычислим производную функции y = 2x2 - 6x + 3  при x0= 1. Имеем y’ = 4x - 6, откуда y’ (1) = -2.  Значит k =
[image: image293.wmf]=
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 -2 . Тогда 
[image: image294.wmf]0
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.  Воспользовавшись уравнением (2), получим   уравнение касательной: 

    y= -1 -2 (x - 1),  или    2x + y - 1 = 0.

Пример 2. Составить уравнение касательной в точке М (3 ; -1) к кривой   

                               
[image: image295.wmf]ï
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Решение:  определим прежде всего значение t, соответствующее точке М (3 ; -1). Это значение должно одновременно удовлетворять уравнениям   t2 - 1 = 3   и   t2 + t - 3 = -1, т.е. t2 = 4 и t2 + t - 2 = 0.  Корни первого уравнения t1 = -2 и t2 = 2 ; корни второго уравнения  t1 = -2  и  t2 = 1. Таким образом, точке М соответствует значение t = -2.  Угловой коэффициент касательной к кривой в точке М равен значению производной
[image: image296.wmf](
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[image: image297.wmf]4
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.  Следовательно, искомое уравнение касательной имеет вид   
[image: image298.wmf](
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,  или   3x - 4y - 13 = 0.

Пример  3. Точка движется прямолинейно по закону 
[image: image299.wmf]t
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 (s выражается в метрах, t - в секундах). Найти скорость и ускорение через 1 сек  после начала движения.

Решение: скорость прямолинейного движения равна производной пути по времени:  
[image: image300.wmf](
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  Отсюда  v (1) = 4 (м/с). 

       Ускорение прямолинейного движения равно второй производной пути по времени:  
[image: image301.wmf](
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,  и, следовательно, а (1) = 6 (м/с2).

Задания для практического занятия:

            Вариант 1

1. Найти угловой коэффициент касательной, проведенной через данную точку М 
[image: image302.wmf])
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     графика функции 
[image: image303.wmf]x
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2. Найти угол наклона касательной, проведённой к кривой y = sin2 x в точке с абсциссой 
[image: image304.wmf]3

2

p

=

x

.

3. Составить уравнение касательной  к кривой 
[image: image305.wmf]x
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   в точке с абсциссой  
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4. В какой точке графика функции   ƒ(x) = 2(x – 9)2 + 12, в которой касательная параллельна OX.

5. Составить уравнение касательной  к кривой
[image: image307.wmf]х
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, параллельной прямой 
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6. Точка движется прямолинейно по закону S(t) =  
[image: image309.wmf]1
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 . Найти мгновенную скорость   точки в момент времени t = 3c.

  Вариант 2
1.  Найти угловой коэффициент касательной, проведенной через данную точку М 
[image: image310.wmf])
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  графика функции 
[image: image311.wmf]tgx
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2. Найти угол наклона касательной, проведённой к кривой y = cos 3x в точке с абсциссой   
[image: image312.wmf]p
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3.Составить уравнение касательной  к кривой  
[image: image313.wmf]2

2

)

(

x

x

x

f

-

=

 в точке с абсциссой 
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4. В какой точке графика функции   ƒ(x) = 
[image: image315.wmf]2
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 (x – 6)2 - 12, в которой касательная     параллельна OX.

5. Составить уравнение касательной  к кривой
[image: image316.wmf]=
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 EMBED Equation.3  [image: image317.wmf]2
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6. Точка движется прямолинейно со скоростью 
[image: image319.wmf]5
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 EMBED Equation.3  [image: image320.wmf])
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 .В какой момент времени  ее ускорение будет равным нулю.

Вариант 3

1. Найти угловой коэффициент касательной, проведенной через данную точку М 
[image: image321.wmf])
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  графика функции 
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2. Найти угол наклона касательной, проведённой к кривой y = tg x в точке
[image: image323.wmf]p
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3.Составить уравнение касательной  к кривой  
[image: image324.wmf]1
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 в точке  c абсциссой 
[image: image325.wmf]1
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4. В какой точке  графика функции  ƒ(x) = ln 3x - x, в которой касательная    параллельна OX.

5. Составить уравнение касательной  к кривой
[image: image326.wmf]=
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 EMBED Equation.3  [image: image327.wmf]х
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6. Точка движется прямолинейно со скоростью 
[image: image329.wmf]3

4

2

1

)

(

2

+

-

=

t

t

t

v



 EMBED Equation.3  [image: image330.wmf])
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 В какой момент времени    ее ускорение  будет равно 4
[image: image331.wmf]2
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Вариант 4

1. Найти угловой коэффициент касательной, проведенной через данную точку М 
[image: image332.wmf])
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   графика функции 
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2.Найти угол наклона касательной, проведённой к кривой y = ctgx  в точке 
[image: image334.wmf]p
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3.Составить уравнение касательной  к кривой 
[image: image335.wmf]1
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 в точке  с абсциссой 
[image: image336.wmf]1
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5. В какой точке  графика функции  ƒ(x) =6(x – 1)2 + 5, в которой касательная    параллельна OX.

5. Составить уравнение касательной  к кривой
[image: image337.wmf]=
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 EMBED Equation.3  [image: image338.wmf]х
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6. Тело движется по закону 
[image: image340.wmf])
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. В какой момент времени его скорость будет равна 3
[image: image341.wmf]с
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Контрольные вопросы

1. Дать определение касательной к графику функции.

2. В чем заключается геометрический смысл производной? 

3. Укажите уравнение касательной к графику функции?

4. В чем состоит физический смысл производной?

Практическая работа № 5
 «Решение задач на приложение производной»

Учебная цель:   научиться применять производную к построению  графиков функций и в решении задач на максимум на минимум 
Образовательные результаты, заявленные во ФГОС:

Студент должен 

уметь: 

- применять методы дифференциального и интегрального исчисления.

знать: 

- основы дифференциального и интегрального исчисления.

Краткие теоретические и учебно-методические материалы по теме практической работы

     Для построения графиков функций можно использовать  следующую схему:

1. Находят область определения функции;

2. Проверяют функцию на четность и нечетность (заметим, что графики четных функций симметричны относительно оси  (ОУ), а нечетных – относительно начала координат); проверяют функцию на периодичность;

3. Находят точки пересечения графика с координатными осями (ось  ОХ  имеет уравнение 
[image: image342.wmf]0
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[image: image343.wmf]0
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4. Находят асимптоты графика функции;

5. Исследуют функцию на монотонность и находят точки экстремума;

6. Находят интервалы выпуклости графика функции и точки его перегиба;

7. Строят график.

          Для применения данной схемы, вспомним некоторые основные понятия и определения. 
            К монотонным функциям относятся возрастающие, строго возрастающие, убывающие и строго убывающие функции. Интервалы, на которых функция возрастает или убывает, называются интервалами монотонности этой функции.

       Точка
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 - называется точкой минимума функции   f(x) , если существует окрестность точки 
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выполняется условие 
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, и  называется точкой  максимума  функции   f(x) , если  выполняется условие 
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.Точки минимума и максимума называются точками экстремума функции.

                    [image: image350.png]
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Правило нахождения интервалов монотонности и точек экстремума:

1. Вычислить производную функции  
[image: image352.wmf])
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2. Найти  критические точки функции, т.е. точки в которых 
[image: image353.wmf]0
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  или  не существует; 

3. Исследовать знак производной функции в интервалах, на которые разбивается область определения функции этими критическими точками;

4. Если   в рассматриваемом интервале 
[image: image354.wmf]0
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,  то на этом интервале функция возрастает.

5.  Если 
[image: image356.wmf]0
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 - критическая точка и при переходе через нее 
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 меняет знак с  «+» на « - », то 
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 - точка максимума; если же она меняет знак с « - » на «+», то 
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 - точка минимума.

           Кривая у= f(x) называется выпуклой вниз на промежутке (а; b), если она лежит выше касательной в любой точке этого промежутка и называется выпуклой вверх, если наоборот.

                     [image: image360.png]
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                Выпуклость вверх на (а; b)                 Выпуклость вниз на (а; b),
       Промежутки, в которых график функции обращен выпуклостью вверх или вниз, называют промежутками выпуклости графика функции.   Точка графика функции у=f(x), разделяющая промежутки выпуклости противоположных направлений этого графика, называются точками перегиба. 

                                    [image: image362.png]



                     х1 – абсцисса точки перегиба кривой
           Точками перегиба могут служить только критические точки, принадлежащие области определения функции у= f(x), в которых вторая производная 
[image: image363.wmf])
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 обращается в нуль или терпит разрыв.

Правило нахождения интервалов выпуклости графика

функции и точек перегиба:

1. Вычислить вторую производную функции  
[image: image364.wmf])
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2. Найти  у функции  критические точки 2-го рода, т.е. точки в которых 
[image: image365.wmf]0
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  или  не существует; 

3. Исследовать знак второй производной функции в интервалах, на которые разбивается область определения функции  критическими точками 2-го рода;

4. Если   в рассматриваемом интервале  
[image: image366.wmf]0
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, то на этом интервале график функции выпуклый вверх; 
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,  то на этом интервале график функции выпуклый вниз;

5.  Если 
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 - критическая точка 2-го рода  и при переходе через нее 
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 меняет  знак,  то 
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 - точка  перегиба.

  Прямая
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 называется наклонной асимптотой для графика функции 
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 Числа  k   и   b    в  уравнении асимптоты находятся из условий:
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        Если 
[image: image375.wmf]0
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 , то прямая  у=b   называется горизонтальной асимптотой.

Прямая   х =а    называется вертикальной асимптотой графика функции    
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       Заметим, что при нахождении вертикальных асимптот графика функции 
[image: image378.wmf])
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 в качестве точки а, через которую может проходить  вертикальная асимптота, следует рассматривать точку разрыва данной функции. 

Примеры по выполнению практической работы

Пример 1.  Исследовать функцию 
[image: image379.wmf]1
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    и   построить ее график.

Решение: исследуем функцию по схеме:

1. D(y)=R;      
2. 
[image: image380.wmf])
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 - функция не будет ни четной, ни нечетной;  функция непериодическая;

3. Найдем точки пересечения  с  (ОХ):   
[image: image381.wmf]0
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. Перебирая делители свободного члена, находим целые нули функции:  
[image: image382.wmf]1
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Найдем точки пересечения графика функции с осью (ОУ): если 
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4. Асимптот нет;

5. Для нахождения интервалов монотонности функции найдем ее производную:
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. Найдем критические точки функции: 
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. Найдем интервалы возрастания и убывания функции:
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       Из чертежа имеем, что функция возрастает на 
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. Найдем экстремумы функции: 
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. Значит, точка максимума имеет координаты 
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. Значит, точка минимума имеет координаты 
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6. Для нахождения интервалов выпуклости  графика функции вычислим вторую производную: 
[image: image395.wmf]2

6

+

=

¢

¢

х

у

. Найдем критические точки 2 рода функции: 
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. Определим знак второй производной в интервалах, на которые   разбивается область определения 
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  Значит, график функции будет выпуклым вверх на 
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. Т.к. вторая производная меняет знак при переходе через точку
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7. Построим график:
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Пример 2. Построить график функции
[image: image404.wmf] у = 
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Решение:

1. Найдем область определения функции. Она задается условиями x ≠ 1, x ≠ -1 (при значениях x ≠ 1, x ≠ -1 знаменатель дроби обращается в нуль). Итак,

D(f)=(-∞;1)(-1:1)(1;+∞).

2. Исследуем функцию на честность:

 f 
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     Значит, заданная функция четна, ее график симметричен относительно оси ординат, а потому можно для начала ограничиться построением ветвей графика при x ≥ 0.

3. Точек пересечения графика функции с осью ОХ нет, 

    Найдем точки пересечения графика функции с  осью ОУ:  если  
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4. Найдем асимптоты графика. Вертикальной асимптотой является прямая x = 1, поскольку при этом значении x знаменатель дроби обращается в нуль, а числитель отличен от нуля. Для отыскания горизонтальной асимптоты надо вычислить 
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     Значит, y = 1 – горизонтальная асимптота графика функции.

5. Найдем  критические точки, точки экстремума и промежутки монотонности функции:

y′
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  Критические точки найдем из соотношения y´ = 0. Получаем  –4x = 0, откуда находим, 

что х = 0. При х < 0 имеем y´ > 0, а при х > 0 имеем y´ <  0. Значит, х = 0 – точка максимума функции, причем уmax = f(0)=
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При х > 0 имеем y´ < 0, но следует учесть наличие точки разрыва х = 1. Значит, вывод о промежутках монотонности будет выглядеть так: на промежутке [0;1) функция убывает, на промежутке (1;+∞) функция также убывает.

1. Вычислим вторую производную
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 нигде не обращается в ноль,  критическими точками будут только точки 
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7.  Отметим (0;-1) – точку максимума, построим прямые  у = 1 – горизонтальную асимптоту, что x = 1   и    x = - 1– вертикальные асимптоты;

                 [image: image417.png]



Задания для практического занятия:

Вариант 1
1. Исследовать по схеме и построить графики  функций:

            2. Представьте число 3 в виде суммы  двух положительных чисел так, чтобы сумма утроенного первого слагаемого и куба второго слагаемого была наименьшей.

            Вариант 2 
1.Исследовать по схеме и построить графики  функций:


[image: image418.wmf];
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           2. Представьте число 5 в виде суммы двух положительных слагаемых так, чтобы произведение первого слагаемого и куба второго слагаемого было наибольшим.

Вариант 3 

1.Исследовать по схеме и построить графики  функций:


[image: image419.wmf];
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            2.Площадь прямо угольника равна 16 см2. Каковы должны быть его размеры, чтобы его периметр был наименьшим.

Вариант 4 

1.Исследовать по схеме и построить графики  функций:

      
[image: image420.wmf];
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            2.Периметр прямоугольника составляет 56 см. Каковы его стороны, если этот прямоугольник имеет наибольшую  площадь?

Контрольные вопросы

1. Дайте определение наклонной асимптоты, горизонтальной и вертикальной асимптот;
2. Сформулируйте правила нахождения интервалов монотонности функции и экстремумов функции;
3. Сформулируйте правила нахождения интервалов выпуклости графика функции и и точек перегиба;
4. Опишите схему исследования функции  для построения ее графика

Практическая работа №6
 «Вычисление неопределенных  интегралов»

Учебная цель:   научиться  вычислять неопределённые интегралы методом непосредственного интегрирования и подстановки
Образовательные результаты, заявленные во ФГОС:

Студент должен 

уметь: 

- применять методы дифференциального и интегрального исчисления;

знать: 

- ос​нов​ные по​ня​тия и ме​то​ды диф​фе​рен​ци​аль​но​го и ин​те​граль​но​го ис​чис​ле​ния.
Краткие теоретические и учебно-методические материалы по теме практической работы

       Функция F(x) называется первообразной для функции   f(x) в  промежутке 
[image: image421.wmf]b
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, если в любой точке этого промежутка ее производная равна   f(x):
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Совокупность всех первообразных функций F(x) + c для функции f(x) на некотором промежутке называется неопределённым интегралом и обозначается
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где 
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   называется подынтегральным выражением, х – переменной интегрирования, а С -произвольной постоянной интегрирования. Процесс нахождения первообразной функции называется интегрированием.   

Основные формулы интегрирования (табличные интегралы)
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Основные свойства  неопределенного интеграла
1.  Неопределенный интеграл от алгебраической суммы функ​ций равен алгебраической сумме неопределенных интег​ралов от этих функций:
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2.  Постоянный множитель подынтегрального выражения можно выносить за знак неопределенного интеграла:
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Методы интегрирования
               Под непосредственным интегрированием понимают способ интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции и применения свойств неопределенного интеграла приводятся к одному или нескольким табличным интегралам.

     Сущность интегрирования методом подстановки заключается в преобразовании интеграла 
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, который легко вычисляется  по какой-либо из основных  формул интегрирования. Для нахождения  
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  заменяем переменную х  новой переменной  u   с помощью подстановки 
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. Дифференцируя это равенство, получаем 
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Подставляя в подынтегральное выражение  вместо х  и  dx  их значения , выраженные через  u    du , имеем 
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После того, как интеграл  относительно новой переменной  и   будет найден, с помощью подстановки   
[image: image451.wmf])
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 он приводится к переменной  х.
Примеры по выполнению практической работы
Пример 1. Вычислить:  
[image: image452.wmf]ò

-

+

-

dx

х

х

х

)

1

3

4

5

(

2

3

4

.      

Решение:  данный интеграл берется непосредственно, после применения основных свойств  интеграла получим:
1) 
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Пример 2. Вычислить: 
[image: image454.wmf];
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Решение: предварительно преобразуем  подынтегральную функцию, а затем применим основные свойства интегралов    
[image: image455.wmf]C
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Пример 3.  Вычислить 
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Решение: данный интеграл решается методом подстановки,  положим 1+x = z.   Продифференцируем это неравенство: d(1+ x)= =dz   или  dx = dz.  Заменив в интеграле переменную интегрирования, получим:    
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Пример 4. Вычислить
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 Решение: пусть  
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 С учетом полученного имеем
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Пример 5.  Вычислить
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 Решение:
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 EMBED Equation.3  [image: image465.wmf](
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где 
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 Пример 6.  Вычислить
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 Решение: сделав замену 
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 EMBED Equation.3  [image: image472.wmf];
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Пример 7.  Вычислить
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 Решение: этот интеграл решается с помощью формул тригонометрии:
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Поэтому, имеем  
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Задания для практического занятия:

Вариант 1
            1. Методом непосредственного интегрирования вычислить: 

            1) 
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             2 Методом подстановки вычислить: 
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Вариант 2
              1. Методом непосредственного интегрирования вычислить: 

             1) 
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2. Методом подстановки вычислить: 

  1)
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Вариант 3
              1. Методом непосредственного интегрирования вычислить: 
      1) 
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        2. Методом подстановки вычислить: 

              1) 
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Вариант 4
              1. Методом непосредственного интегрирования вычислить: 

              1) 
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        2. Методом подстановки вычислить: 

               1) 
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                                                   Контрольные вопросы

1. Какая  функция называется первообразной для функции 
[image: image518.wmf])
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x
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2.  Что называется неопределенным интегралом функции 
[image: image519.wmf])

(

x

f

на некотором промежутке?

3.  Перечислите  свойства неопределенного интеграла и основные табличные интегралы.

4. В чем заключается  метод непосредственного интегрирования?  В чем суть 
метода подстановки?
Практическая работа № 7
    «Вычисление определенных интегралов и их применение к вычислению площадей плоских фигур»
Учебная цель:   научиться вычислять определённые интегралы, применяя  метод непосредственного интегрирования и метод постановки 
Образовательные результаты, заявленные во ФГОС:

Студент должен 

уметь: 

- применять методы дифференциального и интегрального исчисления;

знать: 

- ос​нов​ные по​ня​тия и ме​то​ды диф​фе​рен​ци​аль​но​го и ин​те​граль​но​го ис​чис​ле​ния.
Краткие теоретические и учебно-методические материалы по теме практической работы

Определённый интеграл

          Приращение F (b) – F (a) любой из первообразных функций F (x) + C  функции   f (x) при изменении аргумента от x = a  до  x = b называется определённым интегралом от a до b от  функции   f (x: )                
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)

(

)

(

)

ò

-

=

b

a

a

F

b

F

dx

x

f

                         (1)

Числа a и b называются пределами интегрирования, а – нижним, b – верхним. Отрезок [a;b] называется отрезком интегрирования. Функция  f (x) называется подынтегральной функцией, а переменная x – переменной интегрирования.  Формула (1)  называется формулой Ньютона -  Лейбница.

Геометрический смысл определенного интеграла

   Если интегрируемая на отрезке [a;b] функция f (x) неотрицательна, то определённый интеграл     
[image: image521.wmf](

)

ò

b

a

dx

x

f

  численно равен площади S   криволинейной трапеции, ограниченной графиком функции   f (x), осью абсцисс и прямыми x = a и x = b :


[image: image522.png]



Свойства определённого интеграла

  1.  Постоянный множитель можно выносить за знак интеграла: 
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  2.  Определённый интеграл от алгебраической суммы двух непрерывных функций равен  алгебраической сумме их интегралов, т.е.  
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  3.    Если a<c<b, то          
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  4.   Если функция f (x) неотрицательная на отрезке [a;b], где a<b, то               
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  5.  Если  f (x)≥ g (x) для всех  x 
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 [a;b], где a<b,  то   
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  6.  Если   m  и  M – наименьшее и наибольшее значения функции  f (x)  на отрезке [a;b], где a<b,    то   
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  7.  (Теорема о среднем). Если функция f (x) непрерывна на отрезке [a;b], то существует точка 
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 такая, что   
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Непосредственное интегрирование предполагает использование основных свойств определенного интеграла и формулы Ньютона – Лейбница. 
Метод подстановки  сводит определенный интеграл 
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  с помощью подстановки 
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  к  определенному интегралу относительно новой переменной и.   При этом старые пределы интегрирования  а  и  b  заменяются соответственно новыми пределами  интегрирования  
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,  которые находятся из исходной подстановки: 
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                     Примеры по выполнению практической работы

             Пример 1.  Вычислить 
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Решение:  

                  
[image: image538.png]



Пример 2.  Вычислить 
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Решение:  
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Пример 3.  Вычислить   
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Решение:    
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Пример 4.     Вычислить 
[image: image543.wmf](

)

ò

-

1

0

4

1

dx

е

е

х

х

    

 Решение:
       [image: image544.png]o -
aET-n=de
(e -1 etan=|e*a

=t

e

= [t
o

£ e
50

(=

&




Пример 5. Вычислить  
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Решение:  сделаем подстановку  
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Новые пределы интегрирования: 
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Пример 6. Вычислить  
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Решение:  Положим 
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Задания для практического занятия:

Вариант 1
1.Вычислить методом непосредственного интегрирования:

  1) 
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2. Вычислить следующие интегралы методом подстановки:  
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Вариант 2

              1. Вычислить методом непосредственного интегрирования:

  1) 
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2. Вычислить следующие интегралы методом подстановки:  
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Вариант 3 

        1. Вычислить методом непосредственного интегрирования: 

 1)  
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2. Вычислить следующие интегралы методом подстановки:  

         1) 
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Вариант 4
              1. Вычислить методом непосредственного интегрирования:

 1) 
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              2. Вычислить следующие интегралы методом подстановки                
1) 
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Контрольные вопросы

1. Что называется определенным интегралом,  и в чем его геометрический смысл?

2.  Назовите формулу Ньютона-Лейбница.

3. Перечислите свойства определенного интеграла.

4.  В чем заключается метод непосредственного интегрирования? В чем заключается метод замены переменной интегрирования в определенном интеграле?
Практическая работа № 8
 «Вычисление площадей плоских фигур»

Учебная цель:   научиться вычислять площади плоских фигур с помощью определённого интеграла 

Образовательные результаты, заявленные во ФГОС третьего 

поколения:

Студент должен 

уметь: 

- применять методы дифференциального и интегрального исчисления;

знать: 

- ос​нов​ные по​ня​тия и ме​то​ды диф​фе​рен​ци​аль​но​го и ин​те​граль​но​го ис​чис​ле​ния.
Краткие теоретические и учебно-методические материалы по теме практической работы

            При вычислении площадей плоских фигур с применением определенного интеграла мы рассмотрим следующие случаи.

1. Фигура ограничена непрерывной и неотрицательной на отрезке 
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]

)

(

,

;

b

a

b

a

<

 функции f(x), осью ОХ  и прямыми 
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.  В этом случае согласно геометрическому смыслу определенного интеграла площадь S фигуры  численно равна 
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           2. Фигура ограничена графиком непрерывной и неположительной на отрезке 
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     функции f (x), осью ОХ  и   прямыми 
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 Рассмотрим функцию – f(x). Фигура аА1В1b симметрична фигуре аАВb относительно оси ОХ, а следовательно, их площади S1  и  S равны. Но
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3.   Фигура ограничена осью Ох, прямыми х = а , х = b и графиком функции   f (x), которая непрерывна на отрезке 
[image: image600.wmf][
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 и меняет свой знак конечное число раз на этом отрезке. В этом случае разбивают отрезок 
[image: image601.wmf][
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на такие частичные отрезки, на которых функция f (x) знакопостоянна на соответствующих отрезках.  В нашем примере   имеется три таких отрезка:
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 EMBED Equation.3 [image: image603.wmf][
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Очевидно, что искомая площадь S численно равна алгебраической сумме интегралов, взятых по каждому из полученных отрезков, причем знаки, с которыми эти интегралы входят в алгебраическую сумму, совпадают со знаками функции f (x) на соответствующих отрезках. Так, например, площадь фигуры,   представленной на рисунке , вычисляется по формуле
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4.  Фигура ограничена графиками двух непрерывных на отрезке 
[image: image606.wmf][
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 функций f(x) и  g(x) и прямыми х = а , х = b,где 
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 (рис. 52) В этом случае искомая площадь S вычисляется по формуле
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5. Фигура ограничена графиками трех и более непрерывных на отрезке 
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]

b

а

;

 функций. В этом случае стараются искомую площадь представить в виде алгебраической суммы площадей, вычисление каждой из которых сводиться к одному из предыдущих четырех случаев. Так, например, площадь фигуры, изображенной на рисунке 
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вычисляется по формуле       
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Примеры по выполнению практической работы

Пример 1. Вычислить площадь фигуры, ограниченной линиями 
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Решение:  построим графики функций. Применив формулу (1), найдем площадь фигуры
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Пример 2. Вычислить площадь фигуры, ограниченной линиями  у = –х2 – 1, у = 0, х = –1. х = 2.

Решение. Построим графики заданных функций, по формуле (2) находим


[image: image617.wmf].)

(

6

1

)

1

(

3

1

2

2

3

1

3

1

)

1

(

)

1

(

2

2

1

2

1

3

3

2

1

3

2

2

ед

x

x

dx

x

dx

x

S

ò

ò

-

-

-

=

÷

ø

ö

ç

è

æ

-

-

-

÷

ø

ö

ç

è

æ

+

×

=

÷

ø

ö

ç

è

æ

+

×

=

+

=

-

-

-

=


                         [image: image618.png]i e
_ N





Пример 3.  Вычислить площадь фигуры, ограниченной линиями y = sin x,  y = 0,  x = -
[image: image619.wmf]p
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Решение: очевидно, что 
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 EMBED Equation.3 [image: image627.wmf](
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Пример 4. Вычислить площадь плоской фигуры, ограниченной линиями
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Из рисунка  видно, что искомая площадь  
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Задания для практического занятия:

            Вариант 1
            Вычислить площади фигур, ограниченных линиями:

1) 
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            Вариант 2

            Вычислить площади фигур, ограниченных линиями:
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            Вариант 3

            Вычислить площади фигур, ограниченных линиями:
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             Вариант 4

             Вычислить площади фигур, ограниченных линиями:
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Контрольные вопросы

1. В чем состоит геометрический смысл определенного интеграла?

2. Перечислите все пять случаев применения определенного интеграла к вычислению площадей плоских фигур.

Практическая работа № 9
«Выполнение операций над множествами»

Учебная цель:   научиться  решать задач на множества, строить диаграммы Эйлера – Венна.
Образовательные результаты, заявленные во ФГОС:

Студент должен 

уметь: 

       - вы​пол​нять опе​ра​ции над мно​же​ст​ва​ми; 

знать: 

        - ос​нов​ные по​ло​же​ния тео​рии мно​жеств. 

 Краткие теоретические и учебно-методические материалы по теме практической работы 

        Множество – это совокупность определенных различаемых объектов, причем таких, что для каждого можно установить, принадлежит этот объект данному множеству или нет.

      Как правило, элементы множества обозначаются маленькими буквами, а сами множества – большими. Принадлежность элемента m множеству M обозначается так:
 m ∈ M.  Множества могут быть конечными, бесконечными и пустыми. Множество, содержащее конечное число элементов, называется конечным. Если множество не содержит ни одного элемента, то оно называется пустым обозначается ∅. Например,
S – множество студентов группы – конечное множество; Z – множество звезд во Вселенной – бесконечное множество; L – множество углов окружности – пустое множество.

      Множество A называют подмножеством множества B  (обозначается A ⊆ B),  если  всякий элемент множества A является элементом множества  B: A  ⊆ B  ↔  a ∈ A → a ∈ B (см. рис. 1) 
                            [image: image663.jpg]



                                                  Рис.1

При  этом  говорят,  что  B  содержит  A, или B покрывает A. Невключение подмножества С  в множество B обозначается  так: С ⊄ В. 

            Множества A и B равны (A = B) тогда и только тогда, когда A ⊆ B, и В ⊆ A, т. е. элементы множеств A и B совпадают.

Множество A называется собственным подмножеством множества B, если A ⊆ B, а В ⊄ A. Обозначается так: A ⊂ B. Например,  B ={a, b, c, d, e, f }, A = {a, c, d}, A ⊂ B . 

            Мощностью  конечного множества М  называется  число  его  элементов.

Обозначается | М |. 

Способы задания множеств

        Множества  могут  быть  заданы  списком,  порождающей  процедурой, арифметическими операциями, описанием свойств элементов или графическим представлением. 

        1.  Задание множеств списком предполагает перечисление элементов. 

Например, множество А  состоит  из  букв a, b, c, d: A  = {a, b, c, d} или множество  N  включает  цифры 0, 2, 3, 4:  N  = {0, 2, 3, 4}. 

        2.  Задание  множеств  порождающей  процедурой  или  арифметическими операциями означает описание характеристических свойств элементов множества: 
X= {x | H(x)}, т. е. множество X содержит такие элементы X, которые обладают свойством H(x). 

       3. Задание множества описанием свойств элементов: например, М – это множество чисел, являющихся степенями двойки. 

      4. Графическое задание множеств происходит  с помощью диаграмм Эйлера–Венна. Замкнутая линия–круг Эйлера – ограничивает множество, а рамка –  универсальное  пространство U (рис.2). 
                                    [image: image664.png]



                                                              Рис.2

Заданы  два  множества: A={a, b, c} и B={b, d, e, f}. Если элементов множеств немного, то они могут на диаграмме указываться явно.
Операции над множествами
            Рассмотрим  такие  операции  над множествами,  как  объединение,  пересечение, разность, симметрическая разность и дополнение.

Объединением множеств А и В (А ∪ В) называется множество, состоящее  из  всех  тех  элементов,  которые  принадлежат  хотя  бы  одному  из множеств А или В. (рис. 3). 

                                              [image: image665.jpg]



                                                                       Рис.3

                                                    А 
[image: image666.wmf]U

 В = {x| x ∈ A или x ∈ B}. 

Пересечением множеств А  и В (А  ∩  В)  называется  множество,  состоящее из элементов, входящих как в множество  А,  так  и  в  множество  В (рис. 4 )

                                              [image: image667.jpg]



Рис. 4

                                             А ∩ В={x| x ∈ A и x ∈ B}.

Разностью множеств А и В (А\В) называется множество всех элементов множества А, которые не содержатся в В (рис. 5,а) А\В = {x | x ∈ A и x ∉ B};   B\A = {x | x ∈ B и x ∉ A} (рис. 5,б).
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                                  Рис.5,а                                                                             Рис.5,б

Симметричная  разность  множеств  А и В, (А
[image: image670.wmf]Å

В):

Симметричная  разность  множеств  А и В находится по формулам:

 А
[image: image671.wmf]Å

В  = (А ∪ В)\(А ∩ В);  А
[image: image672.wmf]Å

В  = (А \  В) ∪ (B \ A). (Рис.6).
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                                                                   Рис.6

Дополнением  (до  универсального  множества)  множества  А  называется  множество 

всех элементов, не принадлежащих А, но принадлежащих универсальному множеству 
(рис. 7).
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                                                               Рис.7

А = { x | x ∈A и x ∉ U}.

Приоритет  выполнения  операций:

           Cначала выполняются операции дополнения,  затем  пересечения  и  только  потом  объединения  и  разности. Последовательность  выполнения  операций  может  быть изменена скобками.

Примеры по выполнению практической работы

     Пример 1.Даны два множества: A = {1, 2, 4, 6} и B = {0, 3, 4, 6}. Найдем множество  C = A  ∪ B.  

Решение:C = {0, 1, 2, 3, 4, 6}.

  Пример 2. Даны множества A = {1, 2, 4, 6} и B = {0, 3, 4, 6}. Найти их пересечение.
Решение: D = A ∩ B = {4, 6}.

   Пример 3. Даны два множества A = {1, 2, 4, 6} и B = {0, 3, 4, 6}. Найти их разность. 

Решение:А\В = {1, 2}; B\A = {0, 3}.

   Пример 4. Даны множества A = {1, 2, 4, 6} и  B = {0, 3, 4, 6}. Найти симметрическую разность A и B.

Решение: А
[image: image675.wmf]Å

В  = (А ∪ В)\(А ∩ В) = {0, 1, 2, 3, 4, 6}\{4, 6} = {0, 1, 2, 3} 

Пример 5. Пусть универсальное множество U состоит из букв русского 

алфавита,  А –  множество  гласных  букв,  тогда 
[image: image676.wmf]A

  –  множество  согласных 

букв и букв ь и ъ.

Пример 6. Пусть X— множество студентов I курса одного факульте​та университета, учащихся на «отлично» и «хорошо», а Y— множество студентов I курса другого факультета универси​тета, учащихся аналогично. Определить множествоX∪Y.

Решение: X∪Y— это множество студентов I курса двух факультетов , успевающих на «отлично» и «хорошо».   

Задания для практического занятия:

Вариант 1

            1. Осуществить операции над множествами: 
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A = {1; 5; 6; 8};  B = {2; 5; 8};  U = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10}.

2.Пусть  А = {1; 3; 4}; В = {2; 3; 4; 5}; С = {1; 5; 6}. Найти: a) 
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3. Построить диаграммы Венна, иллюстрирующие множества:
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[image: image686.wmf];

C

B

A

Ç

Ç

 б) 
[image: image687.wmf];

)

\

(

C

B

A

È

 в) 
[image: image688.wmf]);

(

\

B

C

A

È

 г) 
[image: image689.wmf])

\

(

B

C

A

È

.

4.  Пусть U = {a; b; c; d},   x = {a; c};   y = {a; b; d};   z = {b; c}.

Найти множества:  a) 
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Вариант 2

1. Осуществить операции над множествами: 
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A = {3; 5; 7} ;  B = {1; 2; 4; 7; 8; 9};  U = {1; 2; 3; 4; 5; 6; 7; 8; 9}.

2. Пусть  А = {а; б; в}; В = {в; г; д}; С = {а; д; е}. Найти: a) 
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3. Построить диаграммы Венна, иллюстрирующие множества:
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4.  Пусть U = {a; b; c; d},   x = {a; c};   y = {a; b; d};   z = {b; c}. Найти множества:  a) 
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x

Ç

;  б) 
[image: image707.wmf])

(

)

(

z

x

y

x

È

Ç

È

;  в) 
[image: image708.wmf]y

x

Ç

.

Вариант 3

1. Осуществить операции над множествами: 
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A = {a; b; d} ;  B = {b; c; d; e; f};  U = {a; b; c; d; e; f; g; h}.

2. Пусть  А = {1; 3}; В = {2; 3; 4; 5}; С = {2; 4; 6}. Найти: a) 
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3. Построить диаграммы Венна, иллюстрирующие множества:
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4.  Пусть U = {a; b; c; d},   x = {a; c};   y = {a; b; d};   z = {b; c}. Найти множества:  a) 
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 EMBED Equation.3  [image: image725.wmf]y

Ç

.

Вариант 4

1. Осуществить операции над множествами: 
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A = {а; б; в; г} ;  B = {г; д; е};  U = {a; б; в; г; д; е; ж; з}.

2. Пусть  А = {1; 3; 4}; В = {2; 3; 4; 5}; С = {1; 5; 6}. Найти: a) 
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3. Построить диаграммы Венна, иллюстрирующие множества:
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4.   Пусть U = {a; b; c; d},   x = {a; c};   y = {a; b; d};   z = {b; c}. Найти множества:  a) 
[image: image739.wmf]z

x

\

;  б) 
[image: image740.wmf]y

z

x

È

Ç

)

(

;  в) 
[image: image741.wmf]y

x

È

.

Контрольные вопросы

1. Дайте определение множества.

2. Какие основные операции над множествами вы знаете?

3. Какие способы задания множеств вы знаете?

4. Как геометрически можно изобразить множества?

Практическая работа № 10 

«Вычисление вероятностей событий»
Учебная цель: научиться вычислять вероятности случайных событий с использованием классической формулы вероятности события.
Образовательные результаты, заявленные во ФГОС:

Студент должен 

уметь: 

        - ис​поль​зо​вать ос​нов​ные по​ло​же​ния тео​рии ве​ро​ят​но​стей и ма​те​ма​ти​че​ской ста​ти​сти​ки;  при​ме​нять стан​дарт​ные ме​то​ды и мо​де​ли  к ре​ше​нию ти​по​вых ве​ро​ят​но​ст​ных и 
ста​ти​сти​че​ских за​дач;  

знать: 

        - ос​нов​ные по​ня​тия и ме​то​ды тео​рии ве​ро​ят​но​стей и ма​те​ма​ти​че​ской ста​ти​сти​ки.
Краткие теоретические и учебно-методические материалы по теме практической  работы 

      При решении ряда теоретических и практических задач требуется из конечного множества элементов по заданным правилам составлять различные комбинации и производить подсчет числа всех возможных таких комбинаций. Такие задачи принято называть комбинаторными, а раздел математики, занимающийся их решением, называется комбинаторикой. Комбинаторика широко применяется в теории вероятностей, теории массового обслуживания, теории управляющих систем и вычислительных машин и других разделах науки и техники. Основными элементами комбинаторики являются размещения, перестановки, сочетания.

       Пусть дано множество, состоящее из n элементов. Размещением из n элементов по т 
[image: image742.wmf](

)

n

m

£

£

0

 элементов называется упорядоченное множество, содержащее m различных элементов  данного множества.  Из определения вытекает, что  размещения из n элементов по m  элементов - это все m –элементные подмножества, отличающиеся составом элементов или порядком их следования. Число всех возможных размещений из n элементов по m  элементов  обозначают 
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Здесь 
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.  Условимся  считать  0! = 1, поэтому         
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        Перестановкой из n элементов называется размещение из п элементов по n элементов.  Так как каждая перестановка содержит все п элементов множества, то различные перестановки отличаются друг от друга только порядком следования элементов.  Число всех возможных перестановок из п элементов обозначают 
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 . Из определения переста​новок следует
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        Сочетанием из п элемен​тов по т 
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 элементов называется любое подмножество, которое содержит т различных элементов данного множества. Следовательно, сочетания из п элементов по т элементов - это все т - элементные подмноже​ства п - элементного множества, причем различными подмножествами считаются только те, кото​рые имеют неодинаковый состав элементов. Подмножества, отличающиеся друг от друга лишь порядком следования элементов, не считаются различными.
        Число всех возможных сочетаний из п элементов по т элементов обозначают 
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                         События, явления могут быть достоверными, невозможными и случайными. Те события, которые  обязательно  произойдут при осуществлении  определённой  совокупности  условий  (которую будем  называть опытом или испытанием), называют достоверными  и обозначают U. Событие, которое заведомо не произойдет, если будет осуществлена определенная совокупность  условий, называют невозможным  и обозначают V .  События, которые при испытании могут произойти, а могут  и не произойти, называют случайными  и обозначают  -    А, В, С. 

        Случайные события называются несовместными, если каждый раз возможно появление только одного из них.     События называются совместными, если  в данных условиях появление одного из них не исключает появление другого при том же испытании. События называются противоположными, если в условиях испытания они, являясь единственными его исходами, несовместны. 
Случайные события бывают элементарные и составные. Множество всех элементарных событий, связанных с некоторым опытом, называется пространством элементарных событий (U). Каждое событие определяется  как подмножество во множестве элементарных событий A. При этом  те элементарные события из  U, при которых  событие  А  наступает (т.е. принадлежит подмножеству А), называются благоприятствующими событию А.       


Пусть 
[image: image756.wmf]А

 - случайное событие, связанное с некоторым опытом. Повторим опыт 
[image: image757.wmf]n

 раз в одних и тех же условиях и пусть при этом событие 
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 появилось 
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 раз.  Отношение
[image: image760.wmf]n

m

  числа 
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 опытов, в которых событие 
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  появилось, к общему числу 
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 проведённых опытов называется частотой события 
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              Постоянная величина р, к которой все более приближается частота событий А при достаточно большом повторении опыта, называется вероятностью события А и обозначается 
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Рассмотрим конечное пространство элементарных событий
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 - попарно несовместные и равновозможные элементарные события. Пусть некоторому событию А благоприятствуют т из п элементарных событий пространства U.   

        Вероятностью  события  р(А)  называется отношение числа т элементарных событий, благоприятствующих событию А, к общему числу п равновозможных элементарных событий:            

                                                                    
[image: image768.wmf](

)

n

m

A

р

=

                                                       (5)

Из определения вероятности вытекают следующие её свойства:

1. Вероятность любого события  
[image: image769.wmf](
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2. Вероятность достоверного события 
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3. Вероятность невозможного события 
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Примеры по выполнению практической работы

                Пример 1.  В группе из 30 учащихся нужно выбрать комсорга, профорга, физорга. Сколькими способами это можно сделать, если каждый из 30 учащихся комсомолец, член профсоюза и спортсмен?

Решение:  искомое число способов равно числу размещений из 30 элементов по 3 элемента, т.е. 
[image: image774.wmf]3
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Ответ: 24360 способов.

                Пример 2.  Сколькими способами можно расставлять на одной полке шесть различных книг? 
Решение: Искомое число способов равно числу перестановок из 6 элементов, т.е. 
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Ответ: 720 способов расстановки.

              Пример 3. В бригаде из 25 человек нужно выделить четырех для работы на определенном участке. Сколькими способами это можно сделать?
Решение:  т.к. порядок выбранных четырех человек не имеет значения, то это можно сделать 
[image: image779.wmf]4
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  способами. По формуле (4) находим  
[image: image780.wmf].
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Ответ: 12650 способов.

         Пример 4.  В урне 3 белых и 9 черных шаров. Из урны наугад вынимают один шар. Какова вероят​ность того, что вынутый шар окажется черным (событие А)?

Решение:  Имеем п = 12, т = 9, и поэтому  
[image: image781.wmf](

)

.

4

3

12

9

=

=

A

р


        Пример 5.     Подбрасывают две игральные кости. Найти вероятность того, что на них в сумме выпа​дает 6 очков (событие А).
Решение: При подбрасывании двух игральных костей общее число равновозможных элементарных исходов равно числу пар
[image: image782.wmf](
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где х и у принимают значения 1, 2, 3, 4, 5, 6:
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т.е. 
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        Пример 6.  В урне 
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 белых и 
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 чёрных шаров. Из урны наугад вынимают 
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 шаров. Найти вероятность того, что среди них будет 
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Решение:  Число элементарных событий 
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. Подсчитаем число элементарных событий, благоприятствующих интересующему нас событию 
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. Каждая комбинация белых шаров может сочетаться с каждой комбинацией чёрных, поэтому 
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Задания для практического занятия:

Вариант 1      

1.  Сколькими способами можно выбрать 4 детали из ящика, в котором 12 деталей?

2.  Сколько можно изготовить различных трёхцветных флажков, если использовать    следующие цвета: белый, синий, красный, жёлтый, чёрный,  зелёный?

3. Сколько пятизначных чисел можно составить  из цифр 2, 3, 4, 5,6?

4. В вазе 5 красных и 7 белых роз. Сколькими способами можно составить букет из 5 роз, если в нем должно быть две красных и три белых розы?
5. Из вазы, в которой находится 5 яблок и 3 персика, выпад одинфрукт. Найти  вероятность  того, что это был персик;

6. В ящике имеется 15 деталей, среди которых имеется 10окрашенных. Сборщик наудачу извлекает три детали. Какова вероятность того, что извлеченные детали будут окрашенные;

7. В цехе работает шесть мужчин и четыре женщины. По табельным 

номерам наудачу отобраны семь человек. Найти вероятность того, что среди отобранных лиц будут три женщины;

  Вариант 2

1. Сколькими способами можно увезти со склада 10 ящиков на двух машинах, если на каждую из машин грузят по 5 ящиков?

               2. Из восьми цифр 1,2,3,4,5,6,7,8 нужно составить четырехзначный код. Сколько вариантов кода существует, если повторения цифр в нем быть не должно?

3.  В школе четыре выпускных класса. Сколько способов

 распределения экзаменаторов существует для проведения экзамена по химии, если на одном экзамене присутствует только один экзаменатор?

4. В вазе 5 апельсинов и 8 яблок.  Сколькими способами можно выбрать 6 фруктов, чтобы среди них было 3 апельсина?
           5. Из корзины, в которой находятся 5 красных и3 синих мяча, вынимают наудачу один мяч.  Найти вероятность того, что мяч окажется красным;

           6. В коробке находится 15 конфет «Мишка на Севере»  и 12 батончиков. Наудачу вынимаются 4 конфеты. Найти вероятность  того, что это будут батончики;

           7. На складе имеется 15 кинескопов, причем  10 из них изготовлены Львовским заводом.  Найти вероятность, что среди  5  взятых наудачу  кинескопов окажется   3 кинескопа Львовского завода;

  Вариант 3
              1. Группа из 28 студентов обменялась фотокарточками. Сколько фотокарточек было роздано?

         2. Для участия группы, в составе 30 человек в спортивных состязаниях нужно выбрать команду из 4-х человек. Сколькими способами можно выбрать участников состязания?

         3. Сколькими способами можно составить список из 8-ми человек?

         4. В ящике с детскими кубиками 8 зеленых и 5 красных кубиков. Сколько способов выбора 7 кубиков существует, если среди них должно быть 5 зеленых кубиков?

         5. Из упаковки, в которой находится 7 белых и 5 черных кубиков, вынимают один кубик. Найти вероятность того, что это будет черный кубик; 

6. В коробке находится 12 апельсинов и 10 яблок. Из коробки случайным образом выбрали 5 фруктов. Найти вероятность того, что выбрали апельсины;

7. В группе 12 студентов, среди которых 8 отличников. По списку наудачу отобраны 9 студентов. Найти вероятность того, что  среди отобранных студентов 5 отличников;

        Вариант 4
             1. Сколько аккордов можно составить на 10-ти клавишах рояля, если  каждый

аккорд содержит три звука?

             2. На коллектив из 25-ти человек выделено три путевки: в санаторий, в дом отдыха
и на турбазу. Сколько способов распределения путевок существует?

             3. Сколькими способами можно рассадить 7 человек на 7-ми стульях?

        4. На столе лежит стопка карт, в которой 10 карт черной масти и 8 карт – красной. Сколькими способами можно выбрать  8 карт, чтобы  среди них было 5 карт черной масти?

             5. Из ящика, в котором 10стандартных и 4 бракованных деталей, наудачу вынимают одну деталь. Найти вероятность того, что, что деталь окажется стандартной;

             6. В коробке 25 деталей, из которых 3 бракованных. Найти вероятность того, что  8 извлеченных наугад деталей будут без брака;

             7. На книжной полке произвольным образом расположено 14 книг, среди которых 9 из серии «Детектив». Найти вероятность того, что среди 8 взятых наугад книг будет 3детектива.
Контрольные вопросы

 1. Какие задачи называются комбинаторными?

 2. Какие основные элементы комбинаторики вы знаете? Дайте их определения и перечислите формулы для их вычисления. 
   3.  Дайте определение случайного события, элементарно​го события, 

достоверного и       невозможного события. Самостоятельно придумайте примеры элементарных, достоверных и невозможных событий.

   4. Какие случайные события называются совместными и какие несовместными?  Самостоятельно придумайте примеры совместных и  не​совместных событий.

    5. Какие случайные события называются равновозможными? Приведите примеры равновозможных случайных собы​тий.

    6.  Дайте классическое  определение вероятности события. Какими свойствами обладает вероятность?

Практическая работа № 11
 «Выборка и ее  характеристики»

Учебная цель: научиться рассчитывать  характеристики  выборки
Образовательные результаты, заявленные во ФГОС:

Студент должен 

уметь: 

        - ис​поль​зо​вать ос​нов​ные по​ло​же​ния тео​рии ве​ро​ят​но​стей и ма​те​ма​ти​че​ской ста​ти​сти​ки;  при​ме​нять стан​дарт​ные ме​то​ды и мо​де​ли  к ре​ше​нию ти​по​вых ве​ро​ят​но​ст​ных и 
ста​ти​сти​че​ских за​дач; поль​зо​вать​ся па​ке​та​ми при​клад​ных про​грамм для ре​ше​ния ве​ро​ят​но​ст​ных и ста​ти​сти​че​ских за​дач;

знать: 

        - ос​нов​ные по​ня​тия и ме​то​ды тео​рии ве​ро​ят​но​стей и ма​те​ма​ти​че​ской ста​ти​сти​ки.

        - ос​нов​ные ста​ти​сти​че​ские па​ке​ты при​клад​ных про​грамм.
Краткие теоретические и учебно-методические материалы по теме практической  работы 

     В самых различных областях производственной и научной деятельности приходится проводить изучение (обследование, измерение, проверку) объектов, принадлежащих некоторой совокупности, по какому-либо признаку. При этом иногда приходится исследовать каждый объект совокупности, т. е. проводить сплошное исследование. Однако   на практике гораздо чаще применяется выборочное исследование. При выборочном исследовании из всей совокупности отбирают некоторым образом определенное число объектов и только их подвергают исследованию. При этом совокупность всех исследуемых объектов называют генеральной совокупностью.

     Выборкой называют совокупность случайно отобранных объектов из генеральной совокупности. Под случайным отбором при образовании выборки понимают такой отбор, при котором все объекты генеральной совокупности имеют одинаковую вероятность попасть в выборку.

     Выборку можно проводить двумя основными способами. При первом способе объект извлекают из генеральной совокупности, исследуют и возвращают в исходную генеральную совокупность; затем снова извлекают некоторый объект, исследуют и возвращают в генеральную совокупность и т. д. Полученную таким образом выборку называют повторной. При втором способе после исследования объекты в генеральную совокупность не возвращают, и выборку в этом случае называют бесповторной.

      Число объектов выборочной или генеральной совокупности называют объемом выборки. Например, если из 10 000 изделий для контроля отобрано 100 изделий, то объем генеральной совокупности N=10 000, а объем выборки  n=100.

       Для того чтобы по выборке можно было с определенной уверенностью судить о всей генеральной совокупности, выборка должна достаточно полно отражать изучаемое свойство объектов генеральной совокупности,т.е быть репрезентативной. Для этого  необходимо, чтобы отбор объектов в выборку осуществлялся действительно случайно и  чтобы изучаемому свойству была присуща статистическая устойчивость .

     Пусть для изучения количественного (дискретного или непрерывного) признака Х из генеральной совокупности извлечена выборка 

                                                           x1, х2, x3, …  xn ,                        (1) 

Разность между наибольшим значением числовой выборки и ее наименьшим значением называют размахом выборки.

     Наблюдавшиеся значения хi признака Х называются вариантами, а неубывающую последовательность вариант  называют вариационным рядом.  

     Пусть при исследовании некоторой генеральной совокупности получена числовая выборка объема  n, причем значение х1 встретилось в выборке  n1 раз, значение х2  - n2  раз, ..., значение хk — nk раз. Числа n1 , n2 , …, nk называют частотами, а их отношения к объему выборки, т. е.  отношения   
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   -  относительными частотами соответствующих значений  x1, х2, x3, … хk   выборки.  Очевидно, что сумма частот равна объему выборки, а сумма относительных частот равна единице, т. е.

                    n1 + n2 + …+ nk = n    ,                  
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        Последовательность пар    (х1 ; n1 ); (х2 ; n2 );  ( х3 ; n3 ); … (хk ; nk ) 

называют статистическим рядом.   Обычно статистический ряд записывают в виде  таблицы:

	 х1
	х2
	х3
	…
	xi
	…
	хk

	  n1
	n2
	n3
	…
	ni
	…
	nk


     (3)
   

     Следующей  таблицей задается так называемое выборочное распределение, в которой  указываются все значения выборки и их соответствующие относительные частоты:

	х1
	х2
	х3
	…
	xi
	…
	хk
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Графические изображения выборки. Полигон и гистограмма

     Для наглядного представления о выборке часто используют различные графические изображения выборки. Простейшими изображениями выборки являются полигон и гистограмма. Пусть выборка задана вариационным рядом: (х1 ; n1 ); (х2 ; n2 );  ( х3 ; n3 ); … (хk ; nk )  .   Полигоном частот называют ломаную с вершинами в указанных точках.

       Полигоном относительных частот называют ломаную с вершинами в точках

                                  (х1 ; 
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     Ясно, что полигон относительных частот получается из полигона частот сжатием вдоль оси ординат в  n  раз, где  n  — объем выборки.

При большом объеме выборки более наглядное представление о ней дает гистограмма. Чтобы построить гистограмму частот, промежуток от наименьшего значения выборки до наибольшего ее значения разбивают на несколько частичных промежутков длины  h. Для каждого частичного промежутка вычисляют сумму si  частот значений выборки, попавших в этот промежуток. Значение  xi выборки, совпавшее с правым концом промежутка, относят к следующему промежутку (если xi — не наибольшее значение выборки). Затем на каждом частичном промежутке, как на основании, строят прямоугольник с высотой  
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. Объединение всех построенных таким образом прямоугольников называют гистограммой частот. Итак, гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых являются частичные промежутки длины h, а высотами — отрезки длины 
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 , где si — сумма частот значений выборки, попавших 

в i-й промежуток.

     Из определения гистограммы ясно, что ее площадь равна объему выборки.

При решении задач в зависимости от объема выборки в большинстве случаев целесообразно брать 10-20 частичных промежутков.

     Аналогично определяют и строят гистограмму относительных частот.

Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых являются частичные промежутки длины h, а высотами — отрезки длины  
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, где   wi  -  суммы относительных частот значении выборки, попавших в i-й промежуток. Площадь гистограммы относительных частот, очевидно, равна  единице.

      Пусть имеется некоторая выборка объема n:  x1, х2, x3, …  xn  . Выброчной средней называется среднее арифметическое значений выборки:
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     Если выборка задана статистическим  рядом (3)   или выборочным распределением (4), то формулу (5) естественно записать в следующем виде:
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Выборочной дисперсией называется  среднее арифметическое квадратов отклонений значений выборки от выборочной средней.
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Если выборка задана  статистическим рядом (3) или выборочным распределением (4), то формулу  (7) можно записать так:
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              (8)

Формулы (7) и (8) можно преобразовать к более удобному для вычислений виду:
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                       (9)

т. е. выборочная дисперсия равна среднему квадратов значений выборки без квадрата выборочной средней.

  Исправленной выборочной дисперсией называется 
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где  S0 — выборочная дисперсия, п — объем выборки. Отсюда, используя формулу (7),  

                     
[image: image826.wmf]å

=

-

-

-

=

n

i

i

x

x

n

S

1

2

)

(

1

1

                                               (11)

Примеры по выполнению практической работы

          Пример 1. Составить  для выборки   1, 10, -2, 1,0, 1, 10, 7, -2, 10, 10, 7

вариационный ряд и найти ее размах.

Решение: записав заданную выборку в виде неубывающей последовательности, получим вариационный ряд

                                            -2,-2,0, 1, 1, 1,7,7, 10, 10, 10, 10.

Размах данной выборки равен 10 - (-2) =12. 

          Пример 2 Для выборки   3,8,-1,3, 0, 5,3,-1,3, 5    определить объем и размах. Записать выборку в виде вариационного ряда и в виде статистического ряда. Найти выборочное распределение. Построить полигон частот.

Решение:  Объем выборки n = 10, ее размах равен 8 - (-1) = 9. Записав значения выборки в виде неубывающей последовательности  получим вариационный ряд

                               -1,-1,0, 3,3, 3,3, 5, 5, 8.

Статистический ряд можно записать в виде последовательности пар чисел  - (-1;2), (0;1), (3;4), 5;2), (8;1) или в виде таблицы

	-1
	0
	3
	5
	8

	2
	1
	4
	2
	1


      Для контроля находим сумму частот: 2+ 1 +4 + 2+ 1 = 10 и убеждаемся в том, что она равна объему выборки.

      Вычислив относительные частоты, найдем выборочное распределение:

	-1
	0
	3
	5
	8
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       Для контроля убеждаемся в том, что сумма относительных частот равна единице:
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Полигон частот для заданной выборки имеет вид:

                                                        [image: image837.png]



           Пример 3.   При измерении напряжения в электросети получена следующая выборка:

                             218, 221, 215, 225, 225, 217,

                             224, 220, 220, 219, 221, 219,

                             222, 227, 218, 220, 223, 230,

                             223, 216, 224, 227, 220, 222

(данные выражены в вольтах). Построить гистограмму частот, если число частичных промежутков равно 5.

Решение:  наименьшее значение выборки равно 215, наибольшее — 230.

Находим длину частичных промежутков  
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. Подсчитываем с учетом кратности число значений выборки, попавших в каждый промежуток.

           Для первого промежутка [215; 218) это число равно 3, для второго [218; 221) оно равно 8, для третьего [221; 224) — 6, для четвертого [224; 227) — 5, для пятого [227; 230] — 2. Следовательно, высоты прямоугольников (слева направо), образующих гистограмму, равны 
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По полученным данным строим гистограмму 

                                 [image: image840.png]



Для контроля убеждаемся в том, что площадь гистограммы равна объему выборки:
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Пример 4. На основании данных о средней заработной плате работников в области в тыс. руб., которые помещены в интервальный вариационный ряд в таблицу, построить гистограмму распределения частот зарплаты работников:
	Заработная
плата
	1-3
	3-5
	5-7
	7-9
	9-11
	11-13

	Число
Работников


	12
	23
	37
	19
	15
	9


Решение: при построении гистог​раммы по оси абсцисс откладываются значения изучаемого признака (границы интервалов), а по оси у – соответствую​щие частоты, в том случае, если интервалы одинаковой величины. Используя мастер диаграмм в MS Excel, получим гистограмму:
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                      Гистограмма распределения частот зарплаты работников

Пример 3. Для выборки    4,5,3,2, 1,2,0,7,7,3    найти выборочную среднюю 
[image: image843.wmf]-

х

, выборочную дисперсию S0, исправленную  выборочную дисперсию S.

Решение: объем выборки п = 10. По формуле (5) находим выборочную среднюю:
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Чтобы найти выборочную дисперсию, воспользуемся формулой (9). Для этого вычислим среднее квадратов значений выборки: 
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Теперь по формуле (9) находим   S0 = 16,6 -3,42= 5,04.   Наконец, используя формулу (10), вычисляем исправленную выборочную дисперсию:
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Пример 4.    Для выборки   3,8-1,3,0,5,3,4,3,5 найти выборочную среднюю 
[image: image847.wmf]-

х

,  выборочную дисперсию S0, исправленную  выборочную дисперсию S.

Решение:   статистический ряд для для данной выборки имеет вид

	-1
	0
	3
	5
	8

	2
	1
	4
	2
	1


Объем выборки п=10. Выборочную среднюю найдем по формуле (6):
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Вычислим среднее квадратов значений выборки:  
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Согласно формуле (9) находим выборочную дисперсию:  S0 = 15,2-2,82= 7,36.

Для вычисления исправленной выборочной дисперсии воспользуемся формулой (10):
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Задания для практического занятия:

            Вариант 1

             1. Для выборки   1,1,2,-5,4,3,3,8,8,1  определите объем и размах. Запишите выборку в виде вариационного ряда и в виде статистического ряда. Найдите выборочное распределение.

            2. Для выборки, заданной статистическим рядом постройте  полигон частот.
	2
	4
	6
	8

	5
	2
	1
	3


            3. Для выборки, заданной вариационным рядом -5, -5, 2, 3, 5,10,15, 15, 20, 20, найдите выборочную среднюю 
[image: image851.wmf]__
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; выборочную дисперсию S0, несмещенную  выборочную дисперсию S. 

4. Произведено выборочное обследование коммерческих фирм по затратам на рекламу, результаты которого представлены в таблице: 
	Затраты на рекламу

 (усл. ден. ед.)
	Кол-во фирм

	40-60
	4

	60-80
	3

	80-100
	5

	100-120
	6

	120-140
	2


По данным выборочного обследования   постройте   гистограмму  частот, используя мастер диаграмм в MS Excel.
          Вариант 2

          1. Для выборки   -3,1,2,4,3,4,4,1,2,1  определите объем и размах. Запишите выборку в виде вариационного ряда и в виде статистического ряда. Найдите выборочное распределение.

          2. Для выборки, заданной статистическим рядом постройте  полигон частот.
	-1
	1
	3
	7

	1
	3
	4
	2


            3. Для выборки, заданной статистическим рядом

	-1
	1
	3
	5
	7
	9

	2
	2
	1
	3
	1
	1


найдите выборочную среднюю 
[image: image852.wmf]__

х

; выборочную дисперсию S0, несмещенную

выборочную дисперсию S;

Пример 4. В результате выборочного обследования коммерческих банков о размере прибыли за год получено следующее распределение:

	Размер прибыли (млн руб.)
	Число банков

	10- 20
20-30
30-40
40-50
 50-60
	5
10
20
15
10


По данным обследования   построить гистограм​му  частот,  используя мастер диаграмм в MS Excel.
Вариант 3

1. Для выборки   4,8,8,-4,2, 3,2,7,2,2  определите объем и размах. Запишите выборку в виде вариационного ряда и в виде статистического ряда. Найдите выборочное распределение.

2. Для выборки, заданной статистическим рядом 

	0
	3
	7
	9

	2
	4
	1
	3


постройте   полигон частот.
3. Для выборки, заданной вариационным рядом 2, 4, 4, 4, 5, 5, 5, 5, 10, 10,  найдите выборочную среднюю 
[image: image853.wmf]__

х

; выборочную дисперсию S0, несмещенную  выборочную дисперсию S;

4. На заводе проведено выборочное обследование выра​ботки деталей рабочими в день. По результатам наблю​дений построили вариационный ряд.
	Количество
деталей
	48
	52
	56
	60
	64
	68
	72
	76
	80
	84

	Количество
рабочих
	2
	4
	6
	8
	12
	30
	18
	8
	7
	5


Постройте гистограмму частот,  используя мастер диаграмм в MS Excel.
              Вариант 4 

1. Для выборки   3,4,5,6,7,2,-4,-2,3,6  определите объем и размах. Запишите выборку в виде вариационного ряда и в виде статистического ряда. Найдите выборочное распределение.

2. Для выборки, заданной статистическим рядом 

	5
	6
	8
	10

	4
	1
	2
	3


постройте   полигон частот.
3. Для выборки, заданной статистическим рядом
	0
	2
	4
	6
	8

	1
	3
	2
	1
	3


найдите выборочную среднюю 
[image: image854.wmf]__

х

; выборочную дисперсию S0, несмещенную

выборочную дисперсию S.

4. Выборочные данные декоративных изделий показали отклонения от стандартного размера, которые помеще​ны в вариационный рад:
	Отклонение
	10,2
	10,4
	10,6
	10,8
	11
	11,2
	11,4
	11,6
	11,8
	12

	Количество
изделий
	2
	3
	8
	13
	15
	20
	12
	10
	6
	1


По данным выборочного обследования постройте гистограмму частот,  используя мастер диаграмм в MS Excel.
Контрольные вопросы

1.  Что называют: а) генеральной совокупностью; б) выборочной совокупностью; в) объемом выборки? Дайте определение вариационного ряда. Что называют размахом выборки?

2. Как для данной выборки получают статистический ряд и выборочное распределение?

4. Какие графические изображения выборок вы знаете? Чему равна площадь гистограммы относительных частот?

6. Дайте определение выборочных характеристик: а) выборочной средней;   б) выборочной дисперсии.  Как связаны между собой выборочная дисперсия и исправленная  выборочная    дисперсия?

          8. Какие   ста​ти​сти​че​ские па​ке​ты при​клад​ных про​грамм вы знаете?
� EMBED Equation.3  ���
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