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ПРЕДИСЛОВИЕ


Методические указания для студентов по выполнению практических занятий  адресованы  студентам очной формы обучения.


Методические указания созданы в помощь для работы на занятиях, подготовки к практическим занятиям, правильного составления отчетов.


Приступая к выполнению практической работы, необходимо внимательно прочитать цель работы, ознакомиться с требованиями к уровню подготовки в соответствии с федеральными государственными стандартами (ФГОС), краткими теоретическими сведениями, выполнить задания работы, ответить на контрольные вопросы для закрепления теоретического материала и сделать выводы. 


Отчет по практической работе необходимо выполнить и сдать в срок, установленный преподавателем. 

Наличие положительной оценки по практическим работам необходимо для допуска к экзамену, поэтому в случае отсутствия студента на уроке по любой причине или получения неудовлетворительной оценки за практическую работу необходимо найти время для ее выполнения или пересдачи.

Правила выполнения практических работ


1. Студент должен прийти на практическое занятие подготовленным к выполнению лабораторной работы.

2. После проведения практической работы студент должен представить отчет о проделанной работе.


3. Отчет о проделанной работе следует выполнять в журнале практических работ на листах формата А4 с одной стороны листа.

Оценку по практической работе студент получает, если:

· студентом работа выполнена в полном объеме;

· студент может пояснить выполнение любого этапа работы;

· отчет выполнен в соответствии с требованиями к выполнению работы;

· студент отвечает на контрольные вопросы на удовлетворительную оценку и выше.


Зачет по выполнению практических работ студент получает при условии выполнения всех предусмотренных программой практических работ после сдачи журнала с отчетами по работам и оценкам.
Внимание! Если в процессе подготовки к практическим работам или при решении задач возникают вопросы, разрешить которые самостоятельно не удается, необходимо обратиться к преподавателю для получения разъяснений или указаний в дни проведения дополнительных занятий.
Обеспеченность занятия:
1. Учебно-методическая литература:
1. - Богомолов Н.В. Практические занятия по математике: учебн. пособие для СПО /Н.В.Богомолов.-11-е изд., перераб. и доп.- М: Издательство Юрайт, 2016. -495с.  Серия: Профессиональное образование.

          2. Григорьев В.П. Элементы высшей математики: Учебник для студ. учреждений среднего проф. образования. 8-е изд., стер. / В.П.Григорьев, Ю.А.Дубинский - М.: Издательский центр «Академия», 2014. – 320 с. 

      2. Справочная литература:
1.  Шипачев В.С. Задачник по высшей математике:  учеб.пособие /В.С.Шипачев.-10-е изд.,стереотип.-М.:ИНФРА-М,2017.-304с.-(Высшее образование).  ISBN 978-5-16-010071-5(print),  ISBN 978-5-16-101831-6(online)

2. В.П. Омельченко Математика: Учебное пособие/ В.П. Омельченко, Э.В. Курбатова. –Изд. 5-е изд., испр. –Ростов н/Д: Феникс, 2014-380 с.

3.  Григорьев В.П. Сборник задач по высшей математике: Учеб. пособие для студентов учрежд. СПО / В.П.Григорьев, Т.Н.Сабурова. – М.: Издательский центр «Академия», 2011. – 160 с.

4. Соловейчик И.Л., Лисичкин В.Т. Сборник задач по математике: Учебное пособие- М.    Высшая школа , 2012 г.

Интернет ресурсы:

Электронно-библиотечная система. [Электронный ресурс] – режим доступа: http://znanium.com/ (2002-2017)

Система федеральных образовательных порталов Информационно-коммуникационные технологии в образовании. [Электронный ресурс] – режим доступа: http://www.ict.edu.ru (2014)      

      3. Технические средства обучения:
      -  калькулятор  инженерный.
Порядок выполнения отчета по практической работе

1. Ознакомиться с теоретическим материалом по практической работе.

2. Выполнить предложенное задание согласно варианту по списку 

группы.

3. Продемонстрировать результаты выполнения предложенных заданий 

преподавателю.

4. Составить по практической работе отчет.

5. Ответить на контрольные вопросы.

Практическая работа № 1
«Действия над матрицами. Вычисление определителей»
Учебная цель:   научиться выполнять операции над матрицами
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

           - выполнять операции над матрицами  и решать системы  линейных уравнений;

знать: 

           - основы математического анализа, линейной алгебры и  аналитической геометрии.
Краткие теоретические и учебно-методические материалы по теме практической работы

     Матрицей называется прямоугольная таблица чисел, содержащая m строк одинаковой длины (или n столбцов одинаковой длины). Матрица записывается в виде
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Матрица, у которой число строк равно числу столбцов, называется квадратной. Квадратную матрицу размера 
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Матрица, полученная из данной заменой каждой ее строки столбцом с тем же номером, называется матрицей транспонированной  к  данной и обозначается 
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Действия над матрицами
Суммой двух матриц 
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   Операция сложения матриц вводится только для матриц одинаковых размеров.

Произведением матрицы 
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     Матрица 
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где  A, B, C – матрицы, 
[image: image42.wmf]a

 и 
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 - числа.

  Элементарными преобразованиями матриц являются:
• перестановка местами двух параллельных рядов матрицы;
• умножение всех элементов ряда матрицы на число, отличное от нуля;
• прибавление ко всем элементам ряда матрицы соответствующих эле​ментов параллельного ряда, умноженных на одно и то же число.
     Две матрицы А и В называются эквивалентными, если одна из них получается из другой с помощью элементарных преобразований. Записы​вается А ~ В.  
          Произведением матрицы 
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т. е. элемент i-й строки и k-го столбца матрицы произведения С равен сумме произведений элементов i-й строки матрицы А на соответствующие элементы k-го столбца матрицы В. Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы.    Т.е. если матрицы А и В квадратные одного размера, то произведения АВ и ВА всегда существуют.

      Квадратной матрице А порядка n можно сопоставить число det А (или 
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       Минором некоторого элемента 
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 определителя n-го порядка назы​вается определитель  (n–1)-го порядка, полученный из исходного путем вычеркивания строки и столбца, на пересечении которых находится выбранный элемент. Обозначается 
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    Алгебраическим дополнением элемента 
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     Определитель матрицы равен сумме произведений элементов некоторой строки (или столбца) на соответствующие им алгебраические дополнения.  В случае определителей 3-го порядка получим, что
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   Квадратная матрица А называется невырожденной, если определитель
∆ = det A≠0. В противном случае (∆ = 0) матрица А называется вырожденной.

     Матрицей, союзной к матрице А, называется матрица

                                 A*= 
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 называется обратной матрице А, если выполняется условие 
                                                  А·А
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где Е – единичная матрица того же порядка, что и матрица А. 

 Пусть А – невырожденная матрица

                                          A=
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Примеры по выполнению практической работы

Пример 1.  Найти сумму матриц А+В, если: 
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Решение: 
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Пример 2. Найти 2А, если   
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Решение: 
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Пример 3. Даны матрицы 
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. Тогда произведение 
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 не определено, так как число столбцов матрицы А (их 3) не совпадает с числом строк матрицы В (их 2). При этом определено произведение 
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, которое считают следующим образом: 
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Пример 4.  Найти определитель матрицы 
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Решение: 
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Пример 5.   Вычислить определитель
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Пример 6. Найти А
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Решение:    
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Составим союзную матрицу. Для этого вычислим алгебраические дополнения:
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Союзная матрица будет следующей: 
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. Вычислим обратную матрицу:
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 EMBED Equation.3  [image: image105.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

-

-

-

-

=

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

-

-

5

8

1

8

13

2

1

2

0

5

8

1

8

13

2

1

2

0


Проверкой  
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  убеждаемся, что обратная матрица найдена верно

Задания для практического занятия:

Вариант 1: 
Даны матрицы А и В:  A=
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1. Найти матрицу C=2A-3B.
2. Найти произведение матриц AB; BA.
3. Вычислить определители матриц det A; det B.
4. Найти Найти сумму и разность матриц:  A+ B, A-B.
5. обратные матрицы A‾¹, B‾¹. Проверить правильность их нахождения умножением 
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Вариант 2:

Даны матрицы А и В:  A =
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1. Найти сумму и разность матриц:  A+ B, A-B.
2. Найти матрицу C=2A-3B.
3. Найти произведение матриц AB; BA.
4. Вычислить определители матриц det A; det B.
5. Найти обратные матрицы A‾ ¹, B‾ ¹. Проверить правильность их
нахождения умножением 
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Вариант 3:
Даны матрицы А и В:  A =
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1. Найти сумму и разность матриц:  A+ B, A-B.
2. Найти матрицу C=2A-3B.
3. Найти произведение матриц AB; BA.
4. Вычислить определители матриц det A; det B.
5. Найти обратные матрицы A‾ ¹, B‾ ¹. Проверить правильность их
нахождения умножением 
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Вариант 4:

Даны матрицы А и В:   A =
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1. Найти сумму и разность матриц:  A+ B, A-B.
2. Найти матрицу C=2A-3B.
3. Найти произведение матриц AB; BA.
4. Вычислить определители матриц det A; det B.
5. Найти обратные матрицы A‾ ¹, B‾ ¹. Проверить правильность их
нахождения умножением 
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Контрольные вопросы

1. Что называется матрицей? Дать определения основных понятий матрицы.
2. Какая матрица называется квадратной? Единичной?

3. Какие операции можно производить над матрицами?

4. Что такое определитель матрицы? 
5. Что такое минор и алгебраическое дополнение  элемента 
[image: image119.wmf]ij
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 матрицы А?

6. Как найти союзную и обратную матрицы для матрицы А?

Практическая работа № 2

«Решение систем линейных уравнений  методом обратной матрицы»

Учебная цель:   научиться решать системы линейных уравнений матричным

методом

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

          - выполнять операции над матрицами  и решать системы  линейных уравнений.

знать: 

           - основы математического анализа, линейной алгебры и  аналитической геометрии.
Краткие теоретические и учебно-методические материалы по теме практической работы

      Системой  линейных алгебраических уравнений, содержащей m уравнений и n неизвестных, называется система вида
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 где числа 
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, называются коэффициентами системы, числа 
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 - свободными членами. Подлежат нахождению числа 
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. Такую систему удобно записывать в компактной матричной форме:
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здесь А – матрица коэффициентов системы, называемая основной матрицей:
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    Расширенной матрицей системы называется матрица 
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, дополненная столбцом членов
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 Решением системы называется 
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 значений неизвестных 
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, при подстановке которых все уравнения системы обращаются в верные равенства.  Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет ни одного решения.  Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если она имеет   более одного решения. В последнем случае каждое ее решение называется частным решением системы. Совокупность всех частных решений называется общим решением.  Решить систему – это значит выяснить, совместна она или не совместна и  если система совместна, значит найти ее общее значение.

   Две системы называются эквивалентными (равносильными), если они имеют одно и то же решение.  Эквивалентные системы чаще всего получаются, в частности, при элементарных преобразованиях системы при условии, что преобразования выполняются лишь над строками матрицы.

Матричный метод решения систем линейных уравнений
 Пусть дана система п линейных уравнений с п неизвестными 
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или в  матричной форме 
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называется главным определителем системы. Если определитель системы отличен от нуля, то система называется невырожденной. Найдем решение данной системы уравнений в случае 
[image: image141.wmf]0

¹

D

. Умножив обе части уравнения 
[image: image142.wmf]B

X

A

=

×

 слева на матрицу 
[image: image143.wmf]1

-

А

, получим

                                                 
[image: image144.wmf].

1

1

B

A

X

A

A

×

=

×

×

-

-

 

Поскольку 
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Отыскание решения системы по формуле (1)  называют матричным методом решения системы.   

Примеры по выполнению практической работы

Пример 1. Решить систему уравнений матричным методом:
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Решение:    
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Составим союзную матрицу. Для этого вычислим алгебраические дополнения:
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Союзная матрица будет следующей: 
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Найдем решение системы по формуле (6):
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Итак, решением системы будет тройка чисел (1; 2; -1).

Задания для практического занятия:

Вариант 1
Матричным методом найти решение системы:

                             а)
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Вариант 2

Матричным методом найти решение системы:

                                      а)
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                                      в)   
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Вариант 3

1. Матричным методом найти решение системы:

                          а)  
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Вариант 4

1. Матричным методом найти решение системы:

                       а) 
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Контрольные вопросы

1. Укажите общий вид системы n линейных уравнений с  n  неизвестными;
2.  Что значит решить систему уравнений?  
3. В чем суть матричного метода решения системы линейных уравнений? Перечислите формулы.

Практическая работа № 3

 «Решение систем линейных уравнений  методом Крамера»

Учебная цель:   научиться решать системы линейных уравнений методом Крамера
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

           - выполнять операции над матрицами  и решать системы  линейных уравнений;

знать: 

           - основы математического анализа, линейной алгебры и  аналитической геометрии.
Краткие теоретические и учебно-методические материалы по теме практической работы

           Системой  линейных алгебраических уравнений, содержащей m уравнений и n неизвестных, называется система вида
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где числа 
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здесь А – матрица коэффициентов системы, называемая основной матрицей:
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               Пусть у данной системы уравнений  
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Поскольку 
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Запишем матричное равенство (6) запишем в виде:

                                          
[image: image195.wmf],

.

.

.

...

.........

..........

...

...

1

.

.

.

2

1

2

1

2

22

12

1

21

11

2

1

÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

×

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

D

=

÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

n

nn

n

n

n

n

n

b

b

b

A

A

A

A

A

A

A

A

A

x

x

x

                                         (5)

или
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Отсюда следует, что              
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Но 
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по элементам первого столбца. Определитель 
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называются формулами Крамера.

Примеры  по выполнению практической работы

Пример 1. Решить систему методом Крамера:

[image: image1.jpg]


                                                     3x1 +   x2 – 2x3 =  6;

                                                     5x1 – 3x2 + 2x3 = -4;

                                                     4x1 – 2x2 – 3x3 = -2.

Находим главный определитель системы:
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          3   1   -2

∆ =    5   -3   2  = 3∙(-3) ∙ (-3) + 1∙ 2∙ 4 + 5∙(-2) ∙ (-2) – 4∙(-3) ∙ (-2) – 5∙ 1∙(-3) – 

         4   -2  -3

-(-2) ∙ 2∙ 3 =  27 +8 +20 -24 + 15 + 12 = 58. 
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[image: image2021.jpg]


Так как главный определитель системы не равен нулю, значит она совместа.   Находим определители: ∆x1, ∆x2, ∆x3. Определитель ∆x1 получается из главного определителя ∆ путём замены в нём первого столбца на столбец свободных членов.

             6    1  -2 

∆x1 =    -4   -3   2     = 54 – 4 – 16 + 12 – 12 + 24 = 58.

            -2  -2   -3

Т.к. ∆x1 отличен от нуля, значит решение системы единственное. Определитель ∆x2 получается из главного определителя ∆ путём замены в нём второго столбца на столбец свободных членов.
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            3   6  -2

∆x2 =    5  -4   2    = 36 + 48 + 20 – 32 + 90 + 12 = 174.

            4  -2  -3

Определитель ∆x3 получается из главного определителя ∆ путём замены в нём третьего столбца на столбец свободных членов.


             3   1   6

∆x3 =    5  -3  -4     = 18 – 16 – 60 + 72 + 10 – 24 = 0.

            4  -2  -2

По формулам Крамера: x1 = 
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Итак, решением системы будет тройка чисел  (1; 3; 0).

Задания для практического занятия:

Вариант 1 

1. Решить систему методом Крамера:

                   а) 
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                     в)  
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Вариант 2

1. Решить систему методом Крамера:

            а) 
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              в)
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Вариант 3

1. Решить систему методом Крамера:

                   а)
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           б) 
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                   в) 
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Вариант 4

1. Решить систему методом Крамера:

         а)  
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                 б)   
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         в)  
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Контрольные вопросы

1. Укажите общий вид системы n линейных уравнений с  n неизвестными;

2.  Что значит решить систему уравнений? Дайте определение общего и частного решений;

3. В чем суть метода Крамера? Перечислите формулы Крамера.
Практическая работа № 4 

 «Решение систем линейных уравнений методом Гаусса»

Учебная цель:   научиться  решать  системы линейных уравнений методом Гаусса

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

          - выполнять операции над матрицами  и решать системы  линейных уравнений;

знать: 

           - основы математического анализа, линейной алгебры и  аналитической геометрии.
Краткие теоретические и учебно-методические материалы по теме практической работы

            Пусть дана система  линейных алгебраических уравнений, содержащей n уравнений и n неизвестных 
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Такую систему удобно записывать в компактной матричной форме:
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здесь А – матрица коэффициентов системы, называемая основной матрицей:
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÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

=

n

x

x

x

X

...

2

1

вектор - столбец из неизвестных 
[image: image231.wmf]j

x


                  
[image: image232.wmf]-

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

=

n

b

b

b

B

...

2

1

вектор - столбец из свободных членов 
[image: image233.wmf]j

b

                  (3)

     Решением системы называется 
[image: image234.wmf]n

 значений неизвестных 
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, при подстановке которых все уравнения системы обращаются в верные равенства.  

Одним из наиболее универсальных и эффективных методов решений линейных алгебраических систем является метод Гаусса, состоящий в по​следовательном исключении неизвестных.         

Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому (в частности, треугольному) виду:
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где 
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 Коэффициенты 
[image: image240.wmf]ii
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 называются главными элементами системы. На втором этапе (обратный ход) идет последовательно определении неизвестных из этой ступенчатой системы.

          Замечание 1. Если ступенчатая система оказывается треугольной, т. е. 
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, то исходная система (1) имеет единственное решение. Из последне​го уравнения находим 
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 из предпоследнего уравнения 
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 далее подни​маясь по системе вверх, найдем все остальные неизвестные 
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Примеры по выполнению практической работы

Пример 1. Решить систему уравнений 
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 Сначала из второго, третьего и четвертого уравнений исключаем неизвестное х1. Для этого из второго уравнения вычтем первое, затем первое уравнение умножим на 2 и вычтем почленно из третьего уравнения, а затем снова первое уравнение умножим на 3 и вычтем почленно из четвертого.  Получим следующую систему:
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 Исключим х2 из третьего и четвертого уравнений последней системы. Для этого сложим второе уравнение системы сначала с третьим, а затем с четвертым.  В результате получим равносильную систему:
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Теперь исключим переменную х3 из четвертого уравнения. Для этого третье уравнение умножим на 4, четвертое уравнение умножим на (-5) и сложим почленно полученные уравнения. Получим систему равносильную данной:
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 EMBED Equation.3  [image: image249.wmf]ï
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     Мы получили систему уравнений треугольного вида. Начинаем обратный ход. Из последнего уравнения находим х4=4, подставляем его в третье уравнение последней системы и находим х3=3; из второго уравнения системы находим х2=2, а из первого х1=1. Решением системы является четверка чисел (1; 2; 3; 4).

   Замечание 2. На практике удобнее работать не с системой (1), а с расширенной ее матрицей, выполняя все элементарные преобразования над ее строка​ми. Удобно, чтобы коэффициент 
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 был равен 1 (уравнения переставить местами, либо разделить обе части уравнения на 
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).
Пример 2. Решить систему методом Гаусса:
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 Решение: в результате элементарных преобразований над расширенной матрицей системы
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 EMBED Equation.3  [image: image254.wmf]÷
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Исходная система свелась к ступенчатой:
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Поэтому общее решение системы: 
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3

13

5

3

4

2

-

-

=

x

x

x

 
[image: image257.wmf].
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Если положить, например, 
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  найдем одно из частных решений этой системы 
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Пример 3. Решить систему методом Гаусса:

                                        
[image: image260.wmf]ï

ï

î

ï

ï

í

ì

=

-

-

=

+

+

=

+

+

=

+

+

.

3

5

,

5

3

,

7

2

3

2

,

3

3

2

1

3

2

1

3

2

1

3

2

1

x

x

x

x

x

x

x

x

x

x

x

x


Решение. Произведем элементарные преобразования над строчками расширенной матрицы системы:


[image: image261.wmf].
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Полученная матрица соответствует системе
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Осуществляя обратный ход, находим 
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Задания для практического занятия:

Вариант 1

1. Найти решение системы методом Гаусса:
               а)
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                   б) 
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               в) 
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Вариант 2

1. Найти решение системы методом Гаусса:

                 а) 
[image: image269.wmf]ï
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      б) 
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Вариант 3

1. Найти решение системы методом Гаусса:

                   а)
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[image: image273.wmf]ï

î

ï

í

ì

=

+

+

=

+

+

=

+

+

;

11

3

2

;

1

3

2

;

5

2

3

z

y

x

z

ó

x

z

y

x


                   в)   
[image: image274.wmf]ï

ï

î

ï

ï

í

ì

-

=

+

+

+

=

+

+

+

=

+

+

+

=

+

+

+

;

5

2

3

4

;

1

2

2

3

;

1

3

2

2

;

5

4

3

2

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x


Вариант 4
1. Найти решение системы методом Гаусса:

             а)
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               В)    
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Контрольные вопросы

1. Укажите общий вид системы n линейных уравнений с  n неизвестными;

2.  Что значит решить систему уравнений? Дать определение общего и частного решений;

3. В чем состоит метод Гаусса решения систем линейных уравнений вы знаете? Опишите его.

Практическая работа № 5 

 «Операции над векторами. Вычисление модуля и скалярного произведения»

Учебная цель:   научиться выполнять операции над векторами в 

координатах
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь:

          - производить действия с векторами;
знать: 

           - основы математического анализа, линейной алгебры и  аналитической геометрии.
Краткие теоретические и учебно-методические материалы по теме практической работы

     Вектором называется направленный отрезок. Вектор, заданный парой   несовпадающих точек А и В, обозначается символом 
[image: image278.wmf]AB

.Точка А называется началом, а точка В – концом вектора. Расстояние 
[image: image279.wmf]AB

 называется длиной (модулем) вектора 
[image: image280.wmf]AB

. Для обозначения векторов употребляются также строчные латинские буквы со стрелкой наверху:    
[image: image281.wmf]a

, 
[image: image282.wmf]b

,  …, 
[image: image283.wmf]x

, 
[image: image284.wmf]y

. Вектор
[image: image285.wmf]A

А

, концы которого совпадают, называется нулевым вектором. Длина нулевого вектора равна нулю. Два вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Если два нулевых вектора  
[image: image286.wmf]a

 и 
[image: image287.wmf]b

  коллинеарны, то они могут быть направлены либо одинаково, либо противоположно. В первом случае векторы 
[image: image288.wmf]a

 и 
[image: image289.wmf]b

 называются сонаправленными 
[image: image290.wmf]image290.wmf

, во втором – противоположно направленными 

. Равные  векторы сонаправлены  и равны по модулю, т.е. если 

, то 

 и 

, и обратно, если векторы сонаправлены и равны по модулю, то она равны, т.е. если 

 и ‌‌

, то 

.

 Для того чтобы построить сумму двух данных векторов 

, нужно выбрать произвольную точку А и отложить от нее вектор

, а затем от точки В отложить вектор 

. Тогда вектор 
[image: image291.wmf]AC

 является  суммой: 
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BC

AB

b

a

с

=

+

=

+

=


                                       [image: image293.png]o




 Этот способ построения называется правилом   треугольника.

       Сумму двух данных векторов 
[image: image294.wmf]a

 и 
[image: image295.wmf]b

 можно построить и следующим образом. Откладывая от произвольной точки О   векторы 
[image: image296.wmf]a
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 и 
[image: image297.wmf]b
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, построим параллелограмм ОАСВ. Тогда вектор 
[image: image298.wmf]OC

 (где 
[image: image299.wmf][

]
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 – диагональ параллелограмма) является искомой суммой: 
[image: image300.wmf]c
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. Этот способ построения называется правилом параллелограмма:
                                       [image: image301.png]



        Два вектора называются противоположными, если их сумма равна нулевому  вектору. Вектор, противоположный вектору 
[image: image302.wmf]a

, обозначают -
[image: image303.wmf]a

. Таким образом, 
[image: image304.wmf](
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. Ненулевые противоположные векторы имеют равные длины и противоположные направления . Вектор с называется разностью векторов 
[image: image305.wmf]a

 и 
[image: image306.wmf]b

, если 
[image: image307.wmf]a
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.  Чтобы вычесть из вектора 
[image: image308.wmf]a

 вектор 
[image: image309.wmf]b

, достаточно прибавить к вектору 
[image: image310.wmf]a

 вектор, противоположный вектору 
[image: image311.wmf]b

, т.е. 
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       Произведением ненулевого вектора 
[image: image314.wmf]a

 на число m называется вектор, имеющий направление вектора 
[image: image315.wmf]a

, если 
[image: image316.wmf]0
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m

, и противоположное направление, если 
[image: image317.wmf]0
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m

. Длина этого вектора равна произведению длины вектора 
[image: image318.wmf]a

 на модуль числа m.

     Произведение вектора 
[image: image319.wmf]a

 на число m обозначается m
[image: image320.wmf]a

. При любых m и 
[image: image321.wmf]a

 векторы   m
[image: image322.wmf]a

 и 
[image: image323.wmf]a

 коллинеарны и 
[image: image324.wmf]a
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     Углом между двумя ненулевыми векторами 
[image: image325.wmf]a

 и 
[image: image326.wmf]b

 называется угол между направлениями этих векторов:      
[image: image327.wmf](
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   Частные случаи: 
1) если 
[image: image329.wmf]b
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Декартова система координат. Действие над векторами в координатах
                                 [image: image333.jpg]



Декартову прямоугольную систему координат в пространстве зададим с помощью точки отсчета – т.О и 3-х взаимно перпендикулярных осей OX, OY, OZ – это ось абсцисс, ось ординат и ось аппликат. Выберем на них масштаб, и тогда положение произвольной точки М определяется тройкой чисел – координатами точки в пространстве: т.М(x;y;z). Этой точке поставим в соответствии вектор   
[image: image334.wmf]OM

, который назовем радиус- вектором, этот вектор будет иметь те же координаты 
[image: image335.wmf]OM

(x;y;z).

Введем на осях ОХ, ОУ,OZ единичные векторы:  
[image: image336.wmf])
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В некоторых учебниках их обозначают 
[image: image339.wmf]3
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. Видим, что они взаимно перпендикулярны (т.к. лежат на координатных осях) и имеют единичную длину:  
[image: image340.wmf]K
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[image: image341.wmf]1
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. Такие векторы называют ортами и они образуют базис 3-х-мерного пространства. Т.о., чтобы задать декартову прямоугольную систему координат в пространстве, надо задать начало отсчета т.О и базис. Тогда радиус-вектор ОМ в базисе 
[image: image342.wmf]K

J

I

,

,

 раскладывается так 

    
[image: image343.wmf].
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 Пусть  в декартовой системе координат  заданы векторы 
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 тогда

  суммой   векторов называется  вектор с координатам  
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                     (1)
 разностью  векторов называется  вектор с координатами 
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                        (2)
 произведение вектора на число  т  называется  вектор с координатами

       
[image: image348.wmf](

)

3

2

1

;

;

ňŕ

m

ŕ

m

ŕ

a

m

=

                                       (3)
длина  вектора  
[image: image349.wmf](
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Если вектор
[image: image351.wmf]AB

 задан   координатами начала и конца 
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то его координаты вычисляются по формуле
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а его длина 
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С помощью этой формулы вычисляется также расстояние между двумя точками на плоскости.

Скалярным произведением двух векторов называется число, равное
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 Скалярное произведение двух ненулевых векторов, с другой стороны, может быть найдено как  произведение модулей этих векторов на косинус угла между ними:
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   Скалярным квадратом вектора 
[image: image358.wmf]a

 называется скалярное произведение  
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. Скалярный квадрат вектора равен квадрату его длины:

 Угол между векторами  
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Условие коллинеарности двух векторов 
[image: image363.wmf](
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т.е. если соответствующие координаты двух векторов  пропорциональны, то векторы коллинеарны.


Условие перпендикулярности двух векторов вытекает из равенства нулю скалярного произведения, поэтому имеет вид


[image: image366.wmf]

 EMBED Equation.3  [image: image367.wmf]0
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Примеры по выполнению практической работы

Пример 1.  Даны координаты точек  т.А(2;-2;1),  т.B(-3;1;4). Найти длину вектора  
[image: image368.wmf]AB

.

Решение:  
[image: image369.wmf]AB

=(-5;3;3)      
[image: image370.wmf].
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Пример 2. Даны векторы 
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.  Найти:

1)длины векторов; 2) их сумму и разность; 3) найти вектор  
[image: image372.wmf]b
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;
4) найти их скалярное произведение; 5) найти угол между данными векторами.

Решение:  
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4) 
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5)  
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Задания для практического занятия:

Вариант 1

              Даны точки: т. А (3; -2; 4), т. В(4; -1; 2), т. С(6;-3; 2),  т.D (7; -3; 1); 
т. E(-2; 4; 3) и    т.F(5; -1; 3).

1.  Найти векторы 
[image: image380.wmf]®
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2.  Найти векторы 
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3. Найти углы между векторами 
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4. Найти расстояние между серединами отрезков 
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5. При каком k   векторы  
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6. При каком t векторы  
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Вариант 2

              Даны точки: т. А (5; -8; -1), т.B (6; -8; -2), т. С(7; -5; -11), т.D (7; -7; -9), 
т. E(6; -1; 5) и    т.F( 4;-7; 5 ).
1.  Найти векторы 
[image: image392.wmf]®
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3.  Найти углы между векторами 
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4.  Найти расстояние между серединами отрезков 
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5.  При каком  k   векторы  
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6.  При каком  t векторы  
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Вариант 3

              Даны точки:  т. А (1; 0; 3), т.B (2; -1; 0),  т.С(0; -6; -5),  т.D (-8; -5; 1),
т. E(3;  -3;  4) и     т.F(5; -2; 7).                       

1.  Найти векторы 
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2.  Найти векторы 
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3. Найти углы между векторами 
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4. Найти расстояние между серединами отрезков 
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5.  При каком  k   векторы  
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6. При каком  t векторы  
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Вариант 4

              Даны точки: т. А (-6; -5; 7), т.B (-7; -15; 8), т. С(14; -10; 9), 
т.D (4; -1; 7), т. E(-5; 9;-7) и т.F(-5; 0; 4)

1. Найти векторы 
[image: image416.wmf]®
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 и  вычислить их длину;

2. Найти векторы 
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3. Найти углы между векторами 
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4. Найти расстояние между серединами отрезков 
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5. При каком k   векторы  
[image: image425.wmf])

4

;

;

7

(

k

а

-

®

 и 
[image: image426.wmf]®

BF

 перпендикулярны?

6. При каком t векторы  
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Контрольные вопросы

1. Дайте определение вектора. Что такое длина вектора?

2. Какие действия можно производить над векторами, какими свойствами они обладают?

3. Перечислите  формулы суммы, разности, умножения вектора на число в координатах;

4. Как найти скалярное произведение двух векторов?

          5. Что называется углом между двумя векторами в пространстве? 
Укажите формулу нахождения  угла между ;

               6. Чему равно скалярное произведение двух ортогональных векторов? 

Практическая работа № 6
 «Составление уравнений прямых на плоскости. Определение взаимного расположения прямых»

Учебная цель:   научиться составлять уравнения прямой на плоскости,  определять  взаимное расположение 2-х прямых

Образовательные результаты, заявленные во ФГОС третьего 
поколения:

Студент должен 

уметь:

- решать задачи на составление  уравнений  прямых на плоскости  и определение их взаимного расположения;
знать: 

           - основы математического анализа, линейной алгебры и  аналитической геометрии.
Краткие теоретические и учебно-методические материалы по теме практической работы

Общее уравнение прямой

Если на плоскости произвольно взята декартова система координат, то всякое уравнение первой степени относительно текущих координат x и y                

                                                                  Ax+By+C=0,                                        (1)

где A и B одновременно не равны нулю, определяет прямую в этой системе координат.

Верно и обратное утверждение: в декартовой системе координат всякая прямая может быть представлена уравнением первой степени вида (1).  Уравнение (1) называется общим уравнением прямой. 

Угловой коэффициент прямой. Уравнение прямой с угловым коэффициентом и начальной  ординатой
      Углом наклона прямой к оси Ох называется наименьший угол φ, на который нужно повернуть в положительном направлении ось абсцисс до её совпадения с данной прямой. Направление любой прямой характеризуется её угловым коэффициентом k, который определяется как тангенс угла наклона φ этой прямой к оси Ох, т.е. k=tg φ. Исключения составляет лишь прямая, перпендикулярная оси Ох, которая не имеет углового коэффициента.

Уравнение прямой, имеющей угловой коэффициент k и пересекающий ось Оу в точке, ордината которой равна b (начальная ордината),  записывается в виде   

                                                                 y=kx+b.                                                         (2)

[image: image429.png]



Угловой коэффициент k прямой, заданной уравнением Ax+By+C=0, находится как  коэффициент k прямой, заданной двумя точками А(ха; уа) и В(хВ;уВ), вычисляется по формуле                                                                                                                                                                                                                    
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Уравнение прямой в отрезках

 Уравнением прямой в отрезках называется уравнение вида
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                                   (4)

где а и b – абсцисса и ордината точек пересечения прямой с осями Ох и Оу, т.е. длины 

отрезков, отсекаемых прямой на координатных осях, взятые с соответствующими знаками.
Уравнение прямой, проходящей через точку в данном направлении

Уравнение прямой, проходящей через т.у А(ха; уа) и имеющей угловой коэффициент k, записывается в виде                      у – уа=k (x – xa).                                                   (5)

Уравнение прямой, проходящей через две точки
Если прямая проходит через две точки т. А (х1; у1) и т.В (х2; у2), имеет вид
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Нормальное уравнение прямой
  Пусть дана прямая С, проходящая через данную точку Мо(х0; у0) и перпендикулярная вектору 
[image: image434.wmf]n

 (А;В).   Любой вектор 
[image: image435.wmf]o

n

¹

, перпендикулярный данной прямой 
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, называется ее нормальным вектором.  Выберем на прямой произвольную т. М(х;у). Тогда 
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. Это равенство можно записать в координатах 
                                      А( х-хо )+В( у-уо )=0                                          (7)

Параметрическое и каноническое уравнения прямой

     Пусть прямая   l  задана начальной точкой М0 (х0; у0)  и направляющим вектором 
[image: image439.wmf]a

 (а1;а2),. Пусть т. М(х ; у)  – любая точка,  лежащая на прямой l .  Тогда вектор 
[image: image440.wmf]M
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[image: image441.wmf]a

.  Следовательно, 
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  . Записывая это уравнение в координатах,  получаем параметрическое уравнение прямой         
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Исключим параметр t из уравнения (9). Это возможно, так как вектор    
[image: image445.wmf]0
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Уравнение (9) называется каноническим уравнением прямой с направляющим вектором 
[image: image452.wmf]a

 =(а1; а2).
  Если а1 =0   и  
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Этими уравнениями задается прямая, параллельная оси  Оу и проходящая через точку М0 (х0; у0). Каноническое уравнение такой прямой имеет вид
                                                           х=х0                                                                                       (10)
Если 
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Этими уравнениями задается прямая, параллельная оси Ох и проходящая через точку М0 (х0; у0). Каноническое уравнение такой прямой имеет вид
                                       
у=у0
[image: image457.wmf]                                                    (11)

Угол между прямыми. Условие параллельности и перпендикулярности двух прямых

 Пусть даны две прямые, заданные общими уравнениями:
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Тогда угол φ  между ними определяется по формуле:
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               (12)

Условие параллельности 2-х прямых:
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Условие перпендикулярности 2-х прямых:    
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Если прямые заданы уравнениями с угловыми коэффициентами
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то угол  φ  между ними вычисляется по формулам
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Условие параллельности в этом случае имеет вид:     
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Условие перпендикулярности прямых:                       
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Если две прямые заданы каноническими уравнениями:
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то угол φ между этими прямыми определяется по формуле:
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Условие параллельности прямых:    
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Условие перпендикулярности прямых:    
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Расстояние от точки до прямой

   Расстояние  d  от точки М(х1; у1)  до прямой Ax+By+C=0   вычисляется по формуле 
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Примеры по выполнению практической работы

Пример 1. Составить уравнение прямой, которая отсекает на отрицательной полуплоскости  Оу отрезок, равный 2 единицам, и образует с осью Ох угол  φ =30˚.

Решение:  Прямая пересекает ось Оу в точке В (0;–2) и имеет угловой коэффициент k=tg φ= =
[image: image474.wmf]3
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. Полагая в уравнении (2)   k=
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Пример 2.   Составить уравнение прямой, проходящей через точки  А (–1; 2) и
В (0;–3). (Указание: угловой коэффициент прямой находится по формуле (3))

Решение: 
[image: image478.wmf]5
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. Отсюда имеем 
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. Подставив в это уравнение координаты т.В, получим: 
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,  т.е. начальная ордината    b = –3 . Тогда получим уравнение 
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Пример 3.  Общее уравнение прямой 2х – 3у – 6 = 0 привести к уравнению в отрезках.

Решение: запишем данное уравнение в виде 2х – 3у=6 и разделим обе его части на свободный член:  
[image: image482.wmf]1
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. Это и есть уравнение данной прямой в отрезках.
Пример 4.  Через точку А (1;2) провести прямую, отсекающую на положительных полуосях координат равные отрезки. 

Решение:  Пусть уравнение искомой прямой имеет вид   
[image: image483.wmf]1
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 По условию а=b. Следова-тельно, уравнение принимает вид   х + у = а. Так как точка А (1; 2) принадлежит этой прямой, значит ее координаты  удовлетворяют уравнению х + у = а;  т.е. 1 + 2 = а, откуда а = 3.  Итак, искомое уравнение записывается следующим образом:   х + у = 3,  или   х + у – 3 = 0.

Пример 5.  Для прямой 
[image: image484.wmf]3
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 написать  уравнение в отрезках. Вычислить площадь треугольника, образованного этой прямой и осями координат.

Решение: Преобразуем данное уравнение следующим образом:   
[image: image485.wmf]3
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.  В результате получим уравнение    
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, которое и является уравнением данной прямой в отрезках.    Треугольник, образованный данной прямой и осями координат, является прямоугольным треугольником с катетами, равными 4 и 3, поэтому его площадь равна S = 
[image: image488.wmf]6
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[image: image489.png]



Пример 6.  Составить уравнение прямой, проходящий через точку
(–2; 5) и образующей с осью Ох угол 45º.

Решение: Угловой коэффициент искомой прямой  k= tg 45º = 1. Поэтому, воспользовавшись уравнением (5), получаем     у – 5 = x – (–2),     или   х – у + 7 = 0.
Пример 7.  Составить уравнение прямой, проходящей через точки
 А(–3; 5) и    В(7; –2).

Решение:  Воспользуемся уравнением (6):
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,    или    
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,  откуда     7х + 10у – 29 = 0.
Пример 8.  Даны точки  М1 (2;-1) и М2(4; 5). Написать уравнение прямой, проходящей через точку М1  перпендикулярно вектору 
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Решение: Нормальный вектор искомой прямой  
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имеет координаты (2;6), следовательно по формуле (7) получим уравнение   2(х-2)+6(у+1)=0 или   х+3у +1=0.

Пример 9. Вычислить угол между прямыми  
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Решение: 
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Пример 10.  Выяснить взаимное расположение прямых: 
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Решение:   а) 
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                   б) 
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Пример 11.  Вычислить угол между прямыми 
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Решение:    
[image: image502.wmf]7

5

2

2

1

=

=

к

и

к



[image: image503.wmf].

28

883

,

0

arccos

;

883

,

0

74

5

17

7

74

5

7

17

1

7

5

1

2

1

7

5

2

0

2

2

»

=

=

×

=

×

=

+

÷

ø

ö

ç

è

æ

×

+

+

×

=

j

j

сos


Пример 12.  Выяснить взаимное расположение прямых: 
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Решение:    
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Пример 13. Найти угол между прямыми   
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Решение: 
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Пример 14. выяснить взаимное расположение прямых:

      а)
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Решение:   а)  
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                   б) 
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 - значит, прямые перпендикулярны.

Пример 15. Вычислить расстояние от точки М(6; 8) до прямой 
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Решение: по формуле (21) получим: 
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Задания для практического занятия:

Вариант 1
1. Привести общее уравнение прямой 2x+3y-6=0 к уравнению в отрезках и вычислить площадь треугольника, отсекаемого этой прямой от соответствующего координатного угла; 

2. В ∆ABC вершины имеют координаты точки А (-3;4), точки В (-4;-3), точки С (8;1). Составить уравнения стороны  (AB), высоты (ВК)  и медианы (CМ);

3. Вычислить угловой коэффициент прямой, проходящей через точку М0 (-2;4) и параллельной  вектору   
[image: image517.wmf]а

(6;-1);

4. Вычислить угол между прямыми     

а) 
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5. Определить взаимное расположение 2-х прямых 2x – 5y – 20 = 0    и   5x + 2y – 10 = 0;

6. Вычислить расстояние от середины отрезка АВ до прямой 
[image: image522.wmf]0
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, если известны координаты концов отрезка т.А(1; 6)  и т.В(9; 8).

Вариант 2
1.  Привести общее уравнение прямой  3x-4y+12=0  к уравнению в отрезках и вычислить длину отрезка,  который отсекается от этой прямой  соответствующим координатным углом;

2.  В ∆ABC вершины имеют координаты точки А (4;2), точки В (1;5), точки С (-2;6). Составить уравнения стороны  (AB), высоты (ВК)  и медианы (CМ);

3. Вычислить угловой коэффициент прямой, проходящей через точку  М0 (3;-4) и параллельной  вектору 
[image: image523.wmf]а

 (-7;5);

4. Вычислить угол между прямыми:

а) 2x - 3y + 7 = 0   и   3x - y + 5 = 0 ;    б) 
[image: image524.wmf]5

4

3

-

=

x

y

        и      y = 2x – 4;

5.Определить взаимное расположение 2-х прямых: 
[image: image525.wmf]4
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6. Вычислить расстояние от середины отрезка АВ до прямой 
[image: image527.wmf]0
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, если известны координаты концов отрезка т.А(18;8),  т.В(-2; -6).

Вариант 3
1. Привести общее уравнение прямой 4x-5y+20=0 к уравнению в отрезках и вычислить площадь треугольника, отсекаемого этой прямой от соответствующего координатного угла;

2. В ∆ABC вершины имеют координаты точки А (3;-2), точки В (7;3), точки С (0;8). Составить уравнения стороны  (AB), высоты (ВК)  и медианы (CМ);

3.  Вычислить угловой коэффициент прямой, проходящей через точку M0 (-1;-2) и  параллельной  вектору 
[image: image528.wmf]а

 (3;-5);

4.  Вычислить угол между прямыми     

   а) 3x + y - 7 = 0   и     x - y + 4 = 0;           б) 
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5.  Определить взаимное расположение 2-х прямых 
[image: image531.wmf]8
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      и      y = 5x + 3;
6. Вычислить расстояние от середины отрезка АВ до прямой 
[image: image532.wmf]0
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, если известны координаты концов отрезка т.А(4;-3), т.В(-6; 5).

Вариант 4
1. Привести общее уравнение прямой 12x-5y+60=0 к уравнению в отрезках и вычислить длину отрезка, который отсекается от этой прямой  соответствующим координатным углом;

2.  В  ∆ABC вершины имеют координаты точки А (0;-2), точки В (3;6), точки
С (1;-4). Составить уравнения стороны  (AB), высоты (ВК)  и медианы (CМ);

3. Вычислить угловой коэффициент прямой, проходящей через точку M0(4;4)  и параллельной  вектору  
[image: image533.wmf]а

  (-2;7);

4.Вычислить угол между прямыми:

а) x +4 y + 8 = 0       и    7x - 3y + 5 = 0;     б) 
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5. Определить взаимное расположение 2-х прямых 
[image: image536.wmf]3
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6. Вычислить расстояние от середины отрезка АВ до прямой  
[image: image538.wmf]0
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, если известны координаты концов отрезка т.А(-4; 8)  и т.В(0; 4).

Контрольные вопросы

1. Назовите уравнения прямой на плоскости, когда известны точка, через которую она проходит и ее направляющий вектор;

2. Какой вид имеет нормальное, общее уравнения прямой на плоскости;

3. Назовите уравнение прямой, проходящей через две точки, уравнение прямой в отрезках, уравнение прямой с угловым коэффициентом;

4. Перечислите формулы для вычисления угла между прямыми, заданными  уравнениями с угловым коэффициентом. Сформулируйте условия параллельности и перпендикулярности двух прямых.

5. Как найти расстояние от точки до прямой?

Практическая работа № 7

 «Решение задач на кривые второго порядка»

Учебная цель:   научиться решать задачи на кривые второго порядка: эллипс, гиперболу и параболу

Образовательные результаты, заявленные во ФГОС третьего
 поколения:

Студент должен
уметь: 

- решать задачи на кривые  второго порядка;
знать: 

           - основы математического анализа, линейной алгебры и  аналитической геометрии.
Краткие теоретические и учебно-методические материалы по теме практической работы

Эллипс есть множество точек плоскости, сумма расстояний от которых до двух фиксированных точек, называемых фокусами эллипса, есть величина постоянная (равная 2а), большая, чем расстояние между фокусами (равное 2с).

Простейшее уравнение эллипса получается, если расположить координатную систему следующим образом: за ось Оx принять прямую, проходящую через фокусы F1 и F2, а за ось Оy – перпендикуляр к оси абсцисс в середине  отрезка [F1F2]. Тогда уравнение эллипса примет вид
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,     где b2 = а2 – с2                                (1)

Точки А и В, С и D  пересечения эллипса с его осями симметрии (координатными осями) называются вершинами эллипса. Отрезки [AВ] – большой осью, а [СD] – малой осью, так как   а > b. Таким образом, параметры a и b, входящие в уравнение эллипса, равны его полуосям. 

[image: image540.png])





      Эксцентриситетом эллипса называется отношение расстояния между фокусами к его большой оси, т.е.

   
[image: image541.wmf]a
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Очевидно, что е < 1.

Если эллипс, определяемый уравнением вида (1), расположен так, что его фокусы лежат на оси Оу, то тогда b> a и большой осью служит отрезок [B1B2] длиной 2b, а малой осью – отрезок [A1A2] длиной 2а.   Эксцентриситет такого эллипса вычисляется по формуле
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     Гиперболой называется множество точек, для которых абсолютная величина разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная (2а), меньшая, чем расстояние между фокусами  (2с).

Простейшее уравнение гиперболы получается, если расположить координатную систему следующим образом: за ось ОХ  принять прямую, проходящую через фокусы  F1 и F2, за ось ОУ  – перпендикуляр в середине отрезка [F1F2] 
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Тогда уравнение гиперболы примет вид

                                                           
[image: image545.wmf]1
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,  где b2 = c2 – a2                           (4)
Гипербола имеет две оси симметрии (координатные оси), с одной из которых (осью абсцисс) она пересекается в двух точках А1 и А2, называемых вершинами гиперболы. Отрезок [А1А2] длиной 2а называется действительной осью гиперболы, а отрезок [B1B2] длиной 2b – мнимой осью гиперболы. Таким образом, параметры a и b, входящие в уравнение гиперболы, равны её полуосям.

Эксцентриситетом гиперболы называется отношение расстояния между фокусами к её действительной оси:
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Очевидно, что е > 1.       
       Гипербола имеет две асимптоты, уравнения которых
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  Если мнимая ось гиперболы направлена по оси ОХ и имеет длину 2а, а действительная ось длиной 2b направлена по оси ОУ, то уравнение гиперболы имеет вид
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      Эксцентриситет такой гиперболы вычисляется по формуле          
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Её асимптоты те же, что и у гиперболы (4).  Гиперболы (4) и (7)  называются сопряжёнными. Гипербола называется равносторонней, если её действительная и мнимая оси равны, т.е.

а = b. Простейшие уравнение равносторонней гиперболы имеет вид

                                             х2 – у2 = а2
                 
                    
 (9)
Параболой называется множество точек плоскости, равноудалённых от данной точки, называемой фокусом, и данной прямой, называемой директрисой параболы.

    Величина p, равная расстоянию от фокуса до директрисы, называется параметром параболы. Прямая, проходящая через фокус параболы перпендикулярно её директрисе, называется осью, а точка пересечения параболы с её осью – вершиной параболы. Простейшее уравнение параболы получается, если координатная система расположена следующим образом: за одну из координатных осей берётся ось параболы, а за другую – прямая, перпендикулярная оси параболы и проведённая посредине между фокусом и директрисой. Тогда уравнение параболы примет вид:
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Уравнение
                                                у = ах2 + bх + с     ( а ≠ 0)                                            (14)

определяет параболу, ось которой перпендикулярна оси абсцисс. 
      Аналогично, уравнение 
                                                      х = my2 + ny + p   (m ≠ 0)                                         (15) 
определяет параболу, ось которой перпендикулярна оси ординат. Уравнения (14) и (15) приводятся к простейшему виду (10) – (13) путём тождественных преобразований с последующим переносом координатной системы.

Примеры по выполнению практической работы:
Пример 1. Найти оси, вершины, фокусы и эксцентриситет эллипса
                                                           9х2 + 25у2 – 225 = 0.

Решение: Приведём данное уравнение к простейшему  виду (1), для чего свободный член перенесём  вправо и разделим на него все члены уравнения. В результате получим
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      Сравнивая полученное уравнение с уравнением (1), имеем а = 5, 
b = 3. Отсюда находим оси эллипса 2а =10, 2b=6 и координаты вершин А1( -5; 0), А2(5; 0), В1(0; -3), В2(0; 3). Далее, находим 
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Следовательно, фокусами эллипса служат точки F1 (-4; 0)  и  F2 (4; 0). Эксцентриситет эллипса вычисляем по формуле (2):    е= 
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Пример 2.  Найти оси, вершины, фокусы, эксцентриситет и уравнения асимптот гиперболы   16х2 – 9у2 – 144 = 0.

Решение: Перенесём свободный член вправо и разделим на него все члены данного уравнения. В результате получим простейшее уравнение гиперболы
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Сравнивая это уравнение с уравнением (4), имеем а = 3, b = 4. Таким образом, действительная ось гиперболы 2а = 6, а мнимая ось 2b = 8; координаты вершин А1 ( –3; 0) и А2 (3; 0). Далее, 
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, следовательно, фокусами гиперболы служат точки F1( –5; 0) и  F2(5; 0). Эксцентриситет гиперболы вычисляем по формуле (5): е = с/а  = 5/3. Наконец, подставляя значения  а = 3, b = 4 в формулы (6), получим уравнения асимптот  гиперболы 
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Пример 3.  Составить уравнение параболы с вершиной в начале координат и 
фокусом в точке   F (0;  – 8).

Решение: Фокус параболы лежит на оси ординат, а вершина – в начале координат, поэтому уравнение параболы можно записать либо в виде х2 = 2ру,  либо в виде х2 =– 2ру.  Далее, поскольку ордината фокуса отрицательна, уравнение параболы следует искать в виде х2= – 2ру. Из координаты фокуса параболы имеем    р / 2 = 8, откуда  p=16   и   2р = 32, и окончательно получаем   х2 =  – 32у.

Задания для практического занятия:

Вариант  1

1. Составить уравнение окружности, концы диаметра которой имеют координаты (0; 3) и (6; -7);

2.Составьте уравнение эллипса с фокусами на оси OX, если расстояние между фокусами равно 20, а эксцентриситет 
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3.Дана гипербола 
[image: image568.wmf]1
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. Найдите вершины, фокусы, эксцентриситет, асимптоты этой гиперболы;

4.Парабола задана уравнением 
[image: image569.wmf]2
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= 14x. Указать координаты фокуса параболы и уравнение её директрисы;

5. Составить уравнение окружности, центр которой лежит в фокусе параболы 
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, а   радиус равен действительной оси эллипса 
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               Вариант 2
1. Составить уравнение окружности, концы диаметра которой имеют      координаты (-2; 3) и (2; 5);

2.Уравнение эллипса 
[image: image572.wmf]1
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. Найти расстояние между фокусами и эксцентриситет   эллипса;

3.Дана гипербола 
[image: image573.wmf]1
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. Найдите вершины, фокусы, эксцентриситет асимптоты этой гиперболы;

4. Парабола задана уравнением 
[image: image574.wmf]2
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 = -5x. Указать координаты фокуса параболы и уравнение её директрисы;

5. Составить уравнение параболы, вершина которой лежит в начале координат,  а  фокус     совпадает с центром окружности 
[image: image575.wmf]0
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               Вариант 3
1. Составьте уравнение окружности с центром в точке (-1; 4) и проходящей через точку (3; 5);

2.Уравнение эллипса 
[image: image576.wmf]1
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. Найти расстояние между фокусами и эксцентриситет эллипса.

3.Составить уравнение гиперболы, если длина её действительной оси равна 12, а эксцентриситет равен 
[image: image577.wmf]3
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. Найти её фокусное расстояние и асимптоты;

4. Парабола задана уравнением y2 = 6x. Указать координаты фокуса параболы и уравнение её директрисы;

5. Составить уравнение окружности с центром в точке (-3; 8),  диаметр которой равен фокусному расстоянию эллипса   
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                Вариант 4
1. Составьте уравнение окружности с центром в точке (-3; 04) и проходящей через точку (2; 4);

2.Составьте уравнение эллипса с фокусами на оси OX, если расстояние между фокусами равно 12, а эксцентриситет 
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3. Найдите вершины, фокусы, эксцентриситет и асимптоты гиперболы  
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4. Парабола задана уравнением y2 = -4x. Указать координаты фокуса параболы и уравнение её директрисы;

5. Составит уравнение гиперболы, фокусы которой совпадают с фокусами эллипса 
[image: image581.wmf]1

36

100

2

2

=

+

у

х

, а    эксцентриситет равен 
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Контрольные вопросы

1. Дайте определение эллипса и назовите его каноническое уравнение. Что такое большая и малая полуоси эллипса, его фокусы, вершины?  Укажите их координаты.

2.  Что такое эксцентриситет эллипса, какой он по значению,  что он характеризует?

3. Дайте определение гиперболы  и  назовите ее каноническое уравнение. Что такое действительная и мнимая  полуоси гиперболы, асимптоты, фокусы, вершины?  Укажите их координаты.

4. Что такое эксцентриситет гиперболы, какой он по значению ?

5. Дайте определение параболы.

6.  Укажите  каноническое уравнение параболы в зависимости от ее расположения на координатной плоскости.

7. Что такое параметр параболы, фокус и директриса параболы?

Практическая работа № 8

 «Вычисление пределов. Раскрытие неопределенностей»

Учебная цель:   Научиться вычислять пределы функции, раскрывать неопределенности при вычислении пределов.
Образовательные результаты, заявленные во ФГОС третьего 
поколения:

Студент должен 

уметь: 

- применять методы дифференциального и интегрального исчисления;

знать: 

- основы дифференциального и интегрального исчисления;

Краткие теоретические и учебно-методические материалы по теме практической работы

     Пусть функция f(x) определена в некоторой окрестности точки а, кроме, быть может, самой точки а. Число В называется пределом функции f(x) в точке а (или при х, стремящемся к а), если для любой последовательности значений аргумента хn(а, сходящейся к а, последовательность соответствующих значений функции f(xn), n(N   сходится к числу В.

В этом случае пишут:      
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Короче, 
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 для любой последовательности хn(а, n(N, сходящейся к а, т.е. xn(a при n((.
Теорема 1: Функция не может иметь двух разных пределов в точке.

Теорема 2: Предел суммы (разности) функций равен сумме (разности) их пределов, если последние существуют:    
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Теорема 3: Предел произведения функций равен произведению их пределов, если последние существуют:                      
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Следствие: Постоянный множитель можно выносить за знак предела, т.е.
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Теорема 4: Предел отношения двух функций равен отношению их пределов, если последние существуют и предел делителя отличен от нуля:
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Пусть функция f(x) определена на всей числовой прямой. Число В называется пределом функции f(x) при х(+(, если 
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 для любой последовательности (xn) такой, что 
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.  В этом случае пишут 
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 для любой последовательности (xn) такой, что 
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В ряде случаев поведение функции f(x) разное при х(+( и при х(-(. Например, для функции 
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, определенной для всех х ( 1, имеем 
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.  Поэтому при исследовании свойств функций рассматривают как 
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Сформулируем определение бесконечного предела функции: если для любой последовательности значений аргумента (xn) такой, что xn ( а имеет место 
[image: image601.wmf]¥

=

¥

®

)

(

lim

n

n

x

f

, то говорят, что предел функции f(x) в точке а есть бесконечность, и пишут   
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     Если 
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, то функция f(x) называется бесконечно большой при х(а. Если же 
[image: image604.wmf]0

)

(

lim

=

®

x

f

a

x

, то функция f(x) называется бесконечно малой при х(а. Аналогично определяются бесконечно большие и бесконечно малые функции при х(+(, х(-(.

Заметим, что имеет место следующее утверждение: если функция f(x) – бесконечно малая при х(а и f(x) ( 0 для х ( а  из некоторой окрестности точки а, то функция 
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 - бесконечно большая при х(а.  Верно и обратное утверждение: если функция f(x) – бесконечно большая при х(а, то функция 
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Примеры по выполнению практической работы

 1) Предел многочлена. 
Пример 1. Вычислить 
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Решение:
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       Т.о.  для вычисления предела многочлена f (x) при  x →а  достаточно вместо переменной x поставить значение а, к которому она стремится, и выполнить соответствующие действия, т.е.   
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2) Предел отношения двух многочленов,  
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 а) Если g (а) ≠ 0, то можно применить теорему о пределе частного.

Пример 2.  Пусть требуется вычислить   
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Решение:   f (x) = x3 – 2x – 3  и  g (x) = x2 + 3x + 3.  Так как g (3) = 32 + 3 ∙ 3 + 3 = 21 ≠ 0. то       имеем:  
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б) Если g (а) = 0, то теорему о пределе частного применить нельзя. Тогда если  ƒ(а) = A ≠ 0, то  
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,   если же ƒ(а) = 0 – имеем неопределённость вида (0/0). В этом случае предел 
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 можно вычислить разложением многочленов ƒ(x) и g(x) на множители.

           Пример 3. Вычислить 
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Решение:  здесь ƒ (2) = 22 - 5∙2 + 6 = 0, g (2) = 22 - 6∙2 + 8 = 0. Так как x ≠ 2, имеем
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3) Предел отношения многочленов 
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            Пример 4. Вычислить 
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7

4

1

3

2

3

lim

2

3

2

3

+

-

-

+

+

-

¥

®

x

x

x

x

x

x

x

.

Решение:
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3

0

0

0

4

0

0

0

3

8

7

1

4

lim

1

3

2

3

lim

8

7

1

4

1

3

2

3

lim

8

7

4

1

3

2

3

lim

3

2

3

2

3

2

3

3

2

3

2

3

2

3

=

+

-

-

+

+

-

=

÷

ø

ö

ç

è

æ

+

-

-

÷

ø

ö

ç

è

æ

+

+

-

=

÷

ø

ö

ç

è

æ

+

-

-

÷

ø

ö

ç

è

æ

+

+

-

=

+

-

-

+

+

-

¥

®

¥

®

¥

®

¥

®

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

.

Пример 5. Вычислить
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3

2

2

3

lim

3

4

3

-

+

-

-

+

¥

®

x

x

x

x

x

x

.
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Пример 6.  Вычислить 
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Решение: 
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4) Пределы некоторых иррациональных функций.  Для вычисления  
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 где ƒ (x) ≥ 0 и 
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, воспользуемся равенством  
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, которое принимается нами без доказательства.
Пример 7. Вычислить    
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Решение: 
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Пример 6. Вычислить  
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Так как  
[image: image630.wmf](
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, то теорему о пределе частного применить нельзя. Имеем неопределённость вида (0/0). Умножая числитель и знаменатель на выражение, сопряжённое знаменателю, получим
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Пример 9. Найти предел 
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 5) Применение замечательных пределов 
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Пользуясь этими формулами, можно вычислить ряд пределов.

Пример 10. Вычислить  
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Решение:
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,  заменяя  3x = y и учитывая, что y → 0 при
 x → 0, получаем:   
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Пример 11. Вычислить 
[image: image642.wmf]x

x

tg

x

3

sin

5

lim

0

®

.

Решение:      
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Здесь мы воспользовались известным пределом  
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Пример 12. Вычислить 
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Решение:  
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Заменяя    
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  и учитывая, что   y → ∞   при    x → ∞,   можем написать
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Задания для практического занятия:

Вариант 1

1. Вычислить пределы функций в точке:  а) 
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2. Вычислить пределы функций на бесконечности: а) 
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3. Вычислить, используя замечательные пределы:

    а) 
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Вариант 2

1.  Вычислить пределы функций в точке:   а) 
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2. Вычислить пределы функций на бесконечности:   а) 
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3. Вычислить, используя замечательные пределы:

   а) 
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Вариант 3 

1.  Вычислить пределы функций в точке:  а)  
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2. Вычислить пределы функций на бесконечности:  а) 
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3. Вычислить, используя замечательные пределы:

     а) 
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Вариант 4

1.  Вычислить пределы функций в точке:   а) 
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2. Вычислить пределы функций на бесконечности:

    а) 
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3. Вычислить, используя замечательные пределы:
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Контрольные вопросы

1. Что называется пределом функции в точке? На бесконечности?

2. Какие свойства пределов функций вы знаете?

3. Как раскрывать неопределенности?

4. Какие замечательные пределы вы знаете?

Практическая работа № 9
 «Дифференцирование сложной функции»

Учебная цель:   научиться  вычислять производные сложных функций
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

- применять методы дифференциального и интегрального исчисления;

знать: 

           - основы дифференциального и интегрального исчисления.
Краткие теоретические и учебно-методические материалы по теме практической работы

        Пусть функция ƒ (x) определена в некоторой окрестности точки x0.  Производной функции ƒ (x) в точке x0 называется отношение приращения функции ∆ƒ (x0) к  приращению аргумента ∆x при ∆x → 0, если этот предел существует, и обозначается ƒ’(x0).
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Производную функции y = ƒ (x), x є ( a;b ) в точке x обозначают ƒ’(x),  y’(x),
[image: image698.wmf]dx
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[image: image699.wmf]dx
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, причём все эти обозначения равноправны.  Операция нахождения производной называется дифференцированием функции.   Функция, имеющая производную в точке x0, называется дифференцируемой в этой точке. Функция, имеющая производную в каждой точке интервала (a;b), называется дифференцируемой на этом интервале; при этом производную ƒ’(x) можно рассматривать как функцию на (a ;b).

Таблица производных элементарных функций
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Правила дифференцирования
  На практике применяют  следующие  правила дифференцирования

                                1. 
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где u и υ обозначают дифференцируемые функции  переменной x,  C - константа.

Дифференцирование сложной функции

Теорема.  Пусть  дана сложная функция 
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 дифференцируема в некоторой точке  х0, а функция 
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 определена на множестве значений функции 
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 и дифференцируема в точке 
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 в данной точке  х0 имеет производную, которая находится по формуле  
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Примеры по выполнению практической работы

Пример 1.  Вычислить 
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Решение:    
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Пример 2.  Вычислить   
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Решение:     
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Пример3.Вычислить
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 Решение:

     1) 
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     2) данная функция является суперпозицией трех функций, поэтому имеем
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Задания для практического занятия:

Вариант 1

1. Вычислить производные следующих функций:

1) 
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3. Вычислить 
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Вариант 2

1.  Вычислить производные следующих функций:
1) 
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2.  Вычислить 
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3.  Найти 
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Вариант 3

1. Вычислить производные следующих функций:
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Вариант 4

1. Вычислить производные следующих функций:
1) 
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Контрольные вопросы

1. Что называется производной функции в точке?

2. Что такое дифференцирование? 

3. Какая функция называется дифференцируемой в точке?

4. Перечислите табличные производные.

5. Какие правила дифференцирования вы знаете?

Практическая работа № 10
 «Геометрический и физический смысл производной»

Учебная цель:   научиться решать задачи на геометрический и физический смысл производной, 
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

      - применять методы дифференциального и интегрального исчисления;

знать: 

          - основы дифференциального и интегрального исчисления.

Краткие теоретические и учебно-методические материалы по теме практической работы

        Геометрический смысл производной состоит в следующем: производная функции 
y = y (x) при данном значении аргумента x = x0 равна угловому коэффициенту касательной, проведённой к графику этой функции  в точке с абсциссой x0.:

                                           y' (x0) = tg α=k                                    (1)   


    Уравнение  касательной к графику  функции y = y (x) в точке М0 (x0 ; y0) имеет вид
                                              y = y0 + y’(x0) (x - x0)                                    (2)    

Если функция  y (x) имеет при x = x0   бесконечную производную, то уравнение касательной имеет вид:

                                      x = x0                                                        (3)

Физический смысл производной. Производная 
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 от функции y = y (x), вычисленная при значении аргумента x = x0,  есть  скорость изменения этой функции относительно независимой переменной x в точке x = x0.  Тогда, если  зависимость между пройденным путём s и временем t при прямолинейном неравномерном движении материальной точки выражается формулой s = s (t), то её мгновенная скорость 
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  в любой момент времени 
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 равна  производной пути по времени:
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При прямолинейном движении   материальной точки ускорение есть скорость изменения скорости,  то     
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Примеры по выполнению практической работы

Пример 1. Найти угол наклона и   уравнение касательной  к параболе y = 2x2 - 6x + 3 в точке М0 (1 ; -1).

Решение: Согласно формуле (1) вычислим угловой коэффициент касательной  - вычислим производную функции y = 2x2 - 6x + 3  при x0= 1. Имеем y’ = 4x - 6, откуда y’ (1) = -2.  Значит k =
[image: image772.wmf]=
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.  Воспользовавшись уравнением (2), получим   уравнение касательной:      y= -1 -2 (x - 1),  или    2x + y - 1 = 0.

Пример 2. Составить уравнение касательной в точке М (3 ; -1) к кривой   
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Решение:  определим прежде всего значение t, соответствующее точке М (3 ; -1). Это значение должно одновременно удовлетворять уравнениям   t2 - 1 = 3   и   t2 + t - 3 = -1, т.е. t2 = 4 и t2 + t - 2 = 0.  Корни первого уравнения t1 = -2 и t2 = 2 ; корни второго уравнения  t1 = -2  и  t2 = 1. Таким образом, точке М соответствует значение t = -2.  Угловой коэффициент касательной к кривой в точке М равен значению производной
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.  Следовательно, искомое уравнение касательной имеет вид   
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Пример  3. Точка движется прямолинейно по закону 
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 (s выражается в метрах, t - в секундах). Найти скорость и ускорение через 1 сек  после начала движения.

Решение: скорость прямолинейного движения равна производной пути по времени:  
[image: image779.wmf](
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  Отсюда  v (1) = 4 (м/с).    Ускорение прямолинейного движения равно второй производной пути по времени:  
[image: image780.wmf](
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,  и, следовательно, 
а (1) = 6 (м/с2).

Задания для практического занятия:

            Вариант 1

1. Найти угловой коэффициент касательной, проведенной через данную точку
М 
[image: image781.wmf])
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     графика функции 
[image: image782.wmf]x
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2. Найти угол наклона касательной, проведённой к кривой y = sin2 x в точке с абсциссой 
[image: image783.wmf]3
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3. Составить уравнение касательной  к кривой 
[image: image784.wmf]x
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   в точке с абсциссой  
[image: image785.wmf]1
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4. В какой точке графика функции   ƒ(x) = 2(x – 9)2 + 12, в которой касательная параллельна OX.

5. Составить уравнение касательной  к кривой
[image: image786.wmf]х
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, параллельной прямой 
[image: image787.wmf]х
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6. Точка движется прямолинейно по закону S(t) =  
[image: image788.wmf]1
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 . Найти мгновенную скорость   точки в момент времени t = 3c.

7. 
[image: image789.wmf]Точка движется по закону 
[image: image790.wmf]3
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 (м). Найти скорость точки в тот момент времени, когда  ее ускорение было равным 20 
[image: image791.wmf]2
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Вариант 2
1.  Найти угловой коэффициент касательной, проведенной через данную точку М 
[image: image792.wmf])
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  графика функции 
[image: image793.wmf]tgx
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2. Найти угол наклона касательной, проведённой к кривой y = cos 3x в точке с абсциссой   
[image: image794.wmf]p
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3.Составить уравнение касательной  к кривой  
[image: image795.wmf]2
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 в точке с абсциссой 
[image: image796.wmf]2
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4. В какой точке графика функции   ƒ(x) = 
[image: image797.wmf]2
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 (x – 6)2 - 12, в которой касательная     параллельна OX.

5. Составить уравнение касательной  к кривой
[image: image798.wmf]=
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 EMBED Equation.3  [image: image799.wmf]2
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[image: image800.wmf]х

у

3

=

.
6. Точка движется прямолинейно со скоростью 
[image: image801.wmf]5
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 EMBED Equation.3  [image: image802.wmf])
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 .В какой момент времени  ее ускорение будет равным нулю.

7. Точка движется по закону 
[image: image803.wmf]3
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 (м). Найти скорость точки в тот момент времени, когда   ее ускорение было равным 16 
[image: image804.wmf]2
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Вариант 3

1. Найти угловой коэффициент касательной, проведенной через данную точку
М 
[image: image805.wmf])
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  графика функции 
[image: image806.wmf]x
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2. Найти угол наклона касательной, проведённой к кривой y = tg x в точке
[image: image807.wmf]p
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3.Составить уравнение касательной  к кривой  
[image: image808.wmf]1
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 в точке  c абсциссой 
[image: image809.wmf]1
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4. В какой точке  графика функции  ƒ(x) = ln 3x - x, в которой касательная    параллельна OX.

5. Составить уравнение касательной  к кривой
[image: image810.wmf]=
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 EMBED Equation.3  [image: image811.wmf]х
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6. Точка движется прямолинейно со скоростью 
[image: image813.wmf]3
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 EMBED Equation.3  [image: image814.wmf])
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 В какой момент времени    ее ускорение  будет равно 4
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7. Тело движется по закону 
[image: image816.wmf]t
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 EMBED Equation.3  [image: image817.wmf]2

5

4

)

(

2

3

-

+

-

=

t

t

t

t

s

. В какой момент времени ее ускорение    будет равным 4 
[image: image818.wmf]2
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Вариант 4

1. Найти угловой коэффициент касательной, проведенной через данную точку М 
[image: image819.wmf])
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   графика функции 
[image: image820.wmf]x
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2.Найти угол наклона касательной, проведённой к кривой y = ctgx  в точке 
[image: image821.wmf]p
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3.Составить уравнение касательной  к кривой 
[image: image822.wmf]1
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 в точке  с абсциссой 
[image: image823.wmf]1
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5. В какой точке  графика функции  ƒ(x) =6(x – 1)2 + 5, в которой касательная    параллельна OX.

5. Составить уравнение касательной  к кривой
[image: image824.wmf]=
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 EMBED Equation.3  [image: image825.wmf]х
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6. Тело движется по закону 
[image: image827.wmf])
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. В какой момент времени его скорость будет равна 3
[image: image828.wmf]с
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7. В какой момент времени материальная точка, движущаяся по закону 
[image: image829.wmf]t
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[image: image830.wmf]2
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Контрольные вопросы

1. Дать определение касательной к графику функции.
2. В чем заключается геометрический смысл производной? 

3. Укажите уравнение касательной к графику функции?

4. В чем состоит физический смысл производной?
Практическая работа № 11

 «Исследование  функций  с помощью производной. Решение задач на максимум и минимум»

Учебная цель:   научиться  применять производную к исследованию  функций,  к решению задач на максимум и минимум
Образовательные результаты, заявленные во ФГОС третьего
поколения:

Студент должен 

уметь: 

      - применять методы дифференциального и интегрального исчисления;

знать: 

          - основы дифференциального и интегрального исчисления.

Краткие теоретические и учебно-методические материалы по теме практической работы

            К монотонным функциям относятся возрастающие, строго возрастающие, убывающие и строго убывающие функции. Интервалы, на которых функция возрастает или убывает, называются интервалами монотонности этой функции.
       Точка
[image: image831.wmf]0

х

 - называется точкой минимума функции   f(x) , если существует окрестность точки 
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выполняется условие 
[image: image835.wmf])

(

)

(

0

x

f

x

f

f

, и  называется точкой  максимума  функции   f(x) , если  выполняется условие 
[image: image836.wmf])
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.Точки минимума и максимума называются точками экстремума функции.

                    [image: image837.png]


              [image: image838.png]



Правило нахождения интервалов монотонности и точек экстремума:

1. Вычислить производную функции  
[image: image839.wmf])
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2. Найти  критические точки функции, т.е. точки в которых 
[image: image840.wmf]0
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  или  не существует; 

3. Исследовать знак производной функции в интервалах, на которые разбивается область определения функции этими критическими точками;

4. Если   в рассматриваемом интервале 
[image: image841.wmf]0
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, то на этом интервале функция убывает; 
[image: image842.wmf]0
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,  то на этом интервале функция возрастает.

5.  Если 
[image: image843.wmf]0
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 - критическая точка и при переходе через нее 
[image: image844.wmf])
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 меняет знак с  «+» на « - », то 
[image: image845.wmf]0
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 - точка максимума; если же она меняет знак с « - » на «+», то 
[image: image846.wmf]0
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 - точка минимума.

           Кривая у= f(x) называется выпуклой вниз на промежутке (а; b), если она лежит выше касательной в любой точке этого промежутка и называется выпуклой вверх, если наоборот.

                     [image: image847.png]


                                [image: image848.png]



                Выпуклость вверх на (а; b)                 Выпуклость вниз на (а; b),
       Промежутки, в которых график функции обращен выпуклостью вверх или вниз, называют промежутками выпуклости графика функции.   Точка графика функции у=f(x), разделяющая промежутки выпуклости противоположных направлений этого графика, называются точками перегиба. 
                                    [image: image849.png]



                     х1 – абсцисса точки перегиба кривой
           Точками перегиба могут служить только критические точки, принадлежащие области определения функции у= f(x), в которых вторая производная 
[image: image850.wmf])
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 обращается в нуль или терпит разрыв.
Правило нахождения интервалов выпуклости графика
функции и точек перегиба:

1. Вычислить вторую производную функции  
[image: image851.wmf])
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2. Найти  у функции  критические точки 2-го рода, т.е. точки в которых 
[image: image852.wmf]0
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  или  не существует; 

3. Исследовать знак второй производной функции в интервалах, на которые разбивается область определения функции  критическими точками 2-го рода;

4. Если   в рассматриваемом интервале  
[image: image853.wmf]0
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, то на этом интервале график функции выпуклый вверх; 
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,  то на этом интервале график функции выпуклый вниз;

5.  Если 
[image: image855.wmf]0
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 - критическая точка 2-го рода  и при переходе через нее 
[image: image856.wmf])
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 меняет  знак,  то 
[image: image857.wmf]0
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 - точка  перегиба.

Правило нахождения наименьшего и наибольшего значения функции в некотором промежутке:
    1.  Найти критические точки, принадлежащие заданному промежутку, и вычислить значения функции в этих точках;

   2. Вычислить значение функции на концах промежутка;
   3.  Сравнить полученные значения, тогда наименьшее и наибольшее из них являются соответственно наименьшим и наибольшим значениями функции в рассматриваемом промежутке.

             С помощью экстремума функций, решаются многие прикладные задачи геометрии, механики и т.д., в которых требуется определить наименьшее или наибольшее значение функции, причем эта функция не дается в готовом виде, а составляется  в соответствии с условиями конкретной задачи.

Примеры по выполнению практической работы

Пример 1. Найти интервалы монотонности функции 
[image: image858.wmf]6
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Решение: данная функция определена на всей числовой прямой. Применим правило отыскания промежутков монотонности:

1.    Вычислим производную:   
[image: image859.wmf]2
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2.    Найдем критические точки:   
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3. Определим  знаки производной в интервалах:

      [image: image861.png]



4. Функция возрастает на промежутке (0; 1), убывает на 
[image: image862.wmf])
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Пример 2. Найти экстремумы функции 
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Решение: D( f )=R, 

1)     Найдем критические точки функции  
[image: image864.wmf]0

)

1

)(

1

(

3

)

1

(

3

3

3

2

2

=

+

-

=

-

=

-

=

¢

х

х

х

х

у


        
[image: image865.wmf])
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2)    Определим знаки производной в интервалах, на которые разбивается область определения  критическими точками

                [image: image866.png]¥ £
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3)  Т.о.  
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[image: image869.wmf]1
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Пример 3.  Найти промежутки выпуклости графика функции вверх, если функция  задана   формулой 
[image: image871.wmf]9
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Решение:

1. Вычислим вторую производную функции  
[image: image872.wmf]6
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2. Найдем  у функции   точки, в которых 
[image: image873.wmf]0
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  или  не существует:  
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3. Исследуем знак второй производной  в интервалах
    [image: image875.png]’_\ f ., J®
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    4. Т.к. 
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график функции выпуклый вверх. 

Пример 4. В каких точках график функции   
[image: image879.wmf]2
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   имеет перегиб:

Решение: 

1.  Вычислим вторую производную функции  
[image: image880.wmf]ő
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2. Найдем  у функции   точки, в которых 
[image: image881.wmf]0
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  или  не существует: 
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3. Исследуем знак второй производной   в полученных интервалах
    [image: image883.png]S
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4. Т.к.  функция меняет знак  в обеих точках, значит у нас две точки перегиба. Вычислим вторые координаты найденных точек: у(0)=2,  у(1)= -2, Значит точки перегиба  следующие (0; 2) и (1; -2).
Пример 5.  Найти наименьшее и наибольшее значение функции 
[image: image884.wmf]10
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Решение:  Функция 
[image: image886.wmf]10
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 непрерывна на отрезке 
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. найдем критические точки функции, для этого вычислим ее производную и приравняем ее нулю:
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 - критические точки функции, причем обе они принадлежат отрезку 
[image: image889.wmf][
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. Вычислим значения функции в критических точках и на концах отрезка:
[image: image890.wmf].
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  Т.о., наименьшее значение функции равно -35 и достигается на левой границе отрезка, а наибольшее значение функции равно 17 и достигается во внутренней точке 
[image: image891.wmf]1
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Пример 6. Требуется огородить проволочной сеткой длиной 2р участок прямоугольной  формы. Найти  размеры участка, при которых его площадь будет наибольшей;

Решение: из условий задачи имеем, что периметр  участка равен 2р. Обозначим длины   сторон прямоугольника  х и  у. Тогда  из периметра прямоугольника имеем 
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. Обозначим через S(x)  площадь прямоугольника.  Тогда 
[image: image893.wmf]2

)

(

)

(

x

px

x

p

x

xy

x

S

-

=

-

=

=

, причем
[image: image894.wmf][

]

p

p

;

0

Î

. Исследуем полученную функцию на экстремум:  
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 - критическая точка, принадлежащая  отрезку
[image: image896.wmf][
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, получаем,  что на первом из них S(x)  возрастает, а на втором убывает. Следовательно, при 
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  площадь прямоугольника будет наибольшей. Найдем 
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. Значит, из прямоугольников с периметром 2р, наибольшую площадь будет иметь квадрат со стороной 
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Задания для практического занятия:

Вариант 1

1. Исследовать функцию на монотонность  и  экстремум:

                             а) 
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2.  Найти интервалы выпуклости и точки перегиба графика функции:
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3. Найти наименьшее и наибольшее значение функции на указанном промежутке:   а)  
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4. Представьте число 3 в виде суммы  двух положительных чисел так, чтобы сумма утроенного первого слагаемого и куба второго слагаемого была наименьшей.
Вариант 2
1.  Исследовать функцию на монотонность  и  экстремум:

     1) 
[image: image907.wmf]x
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2.  Найти интервалы выпуклости и точки перегиба графика функции:

                                 
[image: image909.wmf]3
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3. Найти наименьшее и наибольшее значение функции на указанном промежутке: 1)  
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4. Представьте число 5 в виде суммы двух положительных слагаемых так, чтобы произведение первого слагаемого и куба второго слагаемого было наибольшим.
Вариант 3

1. Исследовать функцию на монотонность  и  экстремум:

    1)  
[image: image912.wmf]x
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2. Найти интервалы выпуклости и точки перегиба графика функции:
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2

5

,

1

3

4

+

-

=

х

х

у

.                        
3. Найти наименьшее и наибольшее значение функции на указанном промежутке:  1)  
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4. Площадь прямо угольника равна 16 см2. Каковы должны быть его размеры, чтобы его периметр был наименьшим.
Вариант 4

1. Исследовать функцию на монотонность  и  экстремум:

     а) 
[image: image917.wmf]5
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2. Найти интервалы выпуклости и точки перегиба графика функции:
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3. Найти наименьшее и наибольшее значение функции на указанном промежутке:

    1) 
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4. Периметр прямоугольника составляет 56 см. Каковы его стороны, если этот прямоугольник имеет наибольшую  площадь?

Контрольные вопросы:
1. Какие функции называются монотонными? Дайте определение интервалов монотонности функции;

2. Как находятся интервалы монотонности функции?

3. Что такое точка минимума функции, точка максимума функции, точки экстремума  функции? 

4. Что называется экстремумом функции и как его находить?  Сформулируйте     достаточное условие существования экстремума функции и правило отыскания    экстремумов функции;
   5.   Сформулируйте правило отыскания  наименьшего и наибольшего значения 
функции на отрезке?

Практическая работа № 12

 «Применение производной к построению графиков функций»

Учебная цель:   научиться применять производную к  построению  графиков
функций
Образовательные результаты, заявленные во ФГОС третьего
 поколения:

Студент должен 

уметь: 

- применять методы дифференциального и интегрального исчисления.

знать: 

- основы дифференциального и интегрального исчисления.

Краткие теоретические и учебно-методические материалы по теме практической работы

     Для построения графиков функций можно использовать  следующую схему:

1. Находят область определения функции;

2. Проверяют функцию на четность и нечетность (заметим, что графики четных функций симметричны относительно оси  (ОУ), а нечетных – относительно начала координат); проверяют функцию на периодичность;

3. Находят точки пересечения графика с координатными осями (ось  ОХ  имеет уравнение 
[image: image922.wmf]0
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, ось  ОУ  имеет уравнение 
[image: image923.wmf]0
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);

4. Находят асимптоты графика функции;

5. Исследуют функцию на монотонность и находят точки экстремума;

6. Находят интервалы выпуклости графика функции и точки его перегиба;

7. Строят график.

          Для применения данной схемы, вспомним некоторые основные понятия и определения.   Прямая
[image: image924.wmf]b
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 называется наклонной асимптотой для графика функции 
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 Числа  k   и   b    в  уравнении асимптоты находятся из условий:
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        Если 
[image: image928.wmf]0
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 , то прямая  у=b   называется горизонтальной асимптотой.

Прямая   х =а    называется вертикальной асимптотой графика функции    
[image: image929.wmf])
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       Заметим, что при нахождении вертикальных асимптот графика функции 
[image: image931.wmf])
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 в качестве точки а, через которую может проходить  вертикальная асимптота, следует рассматривать точку разрыва данной функции. 

Примеры по выполнению практической работы

Пример 1.  Исследовать функцию 
[image: image932.wmf]1
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    и   построить ее график.

Решение: исследуем функцию по схеме:

1. D(y)=R;      
2. 
[image: image933.wmf])
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 - функция не будет ни четной, ни нечетной;  функция непериодическая;

3. Найдем точки пересечения  с  (ОХ):   
[image: image934.wmf]0
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. Перебирая делители свободного члена, находим целые нули функции:  
[image: image935.wmf]1
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Найдем точки пересечения графика функции с осью (ОУ): если 
[image: image936.wmf]0
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4. Асимптот нет;

5. Для нахождения интервалов монотонности функции найдем ее производную:
[image: image938.wmf]1
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. Найдем критические точки функции: 
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. Найдем интервалы возрастания и убывания функции:
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       Из чертежа имеем, что функция возрастает на 
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, убывает на        
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. Найдем экстремумы функции: 
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)

1

(

)

(

max

=

-

=

f

x

f

. Значит, точка максимума имеет координаты 
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. Значит, точка минимума имеет координаты 
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6. Для нахождения интервалов выпуклости  графика функции вычислим вторую производную: 
[image: image948.wmf]2
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. Найдем критические точки 2 рода функции: 
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. Определим знак второй производной в интервалах, на которые   разбивается область определения 

                                           [image: image950.png]T S1(®)
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  Значит, график функции будет выпуклым вверх на 
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7. Построим график:


[image: image956.png]y=+x-z-1





Пример 2. Построить график функции
[image: image957.wmf] у = 
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Решение:

1. Найдем область определения функции. Она задается условиями x ≠ 1, x ≠ -1 (при значениях x ≠ 1, x ≠ -1 знаменатель дроби обращается в нуль). Итак,

D(f)=(-∞;1)(-1:1)(1;+∞).

2. Исследуем функцию на честность:

 f 
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     Значит, заданная функция четна, ее график симметричен относительно оси ординат, а потому можно для начала ограничиться построением ветвей графика при x ≥ 0.

3. Точек пересечения графика функции с осью ОХ нет, 

    Найдем точки пересечения графика функции с  осью ОУ:  если  
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4. Найдем асимптоты графика. Вертикальной асимптотой является прямая x = 1, поскольку при этом значении x знаменатель дроби обращается в нуль, а числитель отличен от нуля. Для отыскания горизонтальной асимптоты надо вычислить 
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     Значит, y = 1 – горизонтальная асимптота графика функции.

5. Найдем  критические точки, точки экстремума и промежутки монотонности функции:

y′
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 Критические точки найдем из соотношения y´ = 0. Получаем  –4x = 0, откуда находим, 

что х = 0. При х < 0 имеем y´ > 0, а при х > 0 имеем y´ <  0. Значит, х = 0 – точка максимума функции, причем уmax = f(0)=
[image: image964.wmf]1
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. При х > 0 имеем y´ < 0. Но следует учесть наличие точек разрыва х =- 1 и х=1. Значит, вывод о промежутках монотонности будет выглядеть так: на промежутках (-∞; -1)  и (-1;0]    функция  возрастает, на промежутках [0;1)  и  (1;+∞) функция убывает.
5. Вычислим вторую производную
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 нигде не обращается в ноль,  критическими точками будут только точки 
[image: image967.wmf]1

±

=

х

. Определим знак 
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7.  Отметим (0;-1) – точку максимума, построим прямые  у = 1 – горизонтальную асимптоту, что x = 1   и    x = - 1– вертикальные асимптоты;

                 [image: image970.png]



Задания для практического занятия:

            Вариант 1
Исследовать по схеме и построить графики  функций:

Вариант 2 
Исследовать по схеме и построить графики  функций:
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Вариант 3 

Исследовать по схеме и построить графики  функций:
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Вариант 4 

Исследовать по схеме и построить графики  функций:
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Контрольные вопросы

1. Дайте определение наклонной асимптоты, горизонтальной и вертикальной асимптот;

2. Опишите схему исследования функции  для построения ее графика

.

Практическая работа № 13

 «Вычисление неопределенных  интегралов методом непосредственного интегрирования»

Учебная цель:   научиться  вычислять неопределённые интегралы методом непосредственного интегрирования

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

      - применять методы дифференциального и интегрального исчисления;

знать: 

- основы дифференциального и интегрального исчисления.

Краткие теоретические и учебно-методические материалы по теме практической работы

       Функция F(x) называется первообразной для функции   f(x) в  промежутке 
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Совокупность всех первообразных функций F(x) + c для функции f(x) на некотором промежутке называется неопределённым интегралом и обозначается
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   называется подынтегральным выражением, х – переменной интегрирования, а С -произвольной постоянной интегрирования. Процесс нахождения первообразной функции называется интегрированием.   

Основные формулы интегрирования (табличные интегралы)
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Основные свойства  неопределенного интеграла
1.  Неопределенный интеграл от алгебраической суммы функ​ций равен алгебраической сумме неопределенных интег​ралов от этих функций:
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2.  Постоянный множитель подынтегрального выражения можно выносить за знак неопределенного интеграла:
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               Под непосредственным интегрированием понимают способ интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции и применения свойств неопределенного интеграла приводятся к одному или нескольким табличным интегралам.

Примеры по выполнению практической работы

Пример 1. Вычислить:  
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Пример 2. Вычислить: 
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Задания для практического занятия:

Вариант 1

            1. Методом непосредственного интегрирования вычислить: 
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Вариант 2

            1. Методом непосредственного интегрирования вычислить: 

1) 
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Вариант 3

            1. Методом непосредственного интегрирования вычислить: 

      1) 
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Вариант 4

            1. Методом непосредственного интегрирования вычислить: 

       1) 
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Контрольные вопросы

1. Какая  функция называется первообразной для функции 
[image: image1047.wmf])
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2.  Что называется неопределенным интегралом функции 
[image: image1048.wmf])
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на некотором промежутке?

3.  Перечислите  свойства неопределенного интеграла и основные табличные интегралы.

4. В чем заключается  метод непосредственного интегрирования?  
Практическая работа № 14

 «Вычисление неопределенных  интегралов методом подстановки и интегрирования  по частям»

Учебная цель:   научиться вычислять неопределённые интегралы, применяя  метод подстановки и метод интегрирования по частям

Образовательные результаты, заявленные во ФГОС третьего 
поколения:

Студент должен 

уметь: 

      - применять методы дифференциального и интегрального исчисления;

знать: 

- основы дифференциального и интегрального исчисления.

Краткие теоретические и учебно-методические материалы по теме практической работы

     Сущность интегрирования методом подстановки заключается в преобразовании интеграла 
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Подставляя в подынтегральное выражение  вместо х  и  dx  их значения , выраженные через  u    du , имеем 
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После того, как интеграл  относительно новой переменной  и   будет найден, с помощью подстановки   
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     Пусть функции 
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  имеют непрерывные производные на некотором промежутке. Найдем дифференциал произведения этих функций:
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 непрерывны, можно проинтегрировать обе части этого равенства, 
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      В правой части формулы (2) постоянную интегрирования С не пишут, т.к  она фактически присутствует в интеграле 
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. Формула (2) называется формулой интегрирования по частям.

Сущность метода интегрирования по частям вполне соответствует его названию. Дело в том, что при вычислении интеграла этим методом подынтегральное выражение 
[image: image1066.wmf]dx

x

f

)

(

 представляется в виде произведения множителей 
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 обязательно входят в 
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. В результате получается, что заданный интеграл находят по частям: сначала находят 
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. Естественно, что этот метод применим лишь в случае, если задача нахождения указанных двух интегралов более проста, чем нахождение заданного интеграла.


При вычислении интегралов методом интегрирования по частям главным является разумное разбиение подынтегрального выражения на множители 
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. Общих установок по этому вопросу не имеется. Однако, для некоторых типов интегралов, вычисляемых методом интегрирования по частям, сделать это возможно. 

     1. В интегралах вида      
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где Р(х) – многочлен относительно х, а – некоторое число, полагают 
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     2. В интегралах вида      
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3. В интегралах вида     
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  можно принять любую из функций 
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Примеры по выполнению практической работы

Пример 1.  Вычислить 
[image: image1091.wmf]ò
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;     
Решение:  положим 1+x = z.   Продифференцируем это неравенство: d(1+ x)= =dz   или   dx = dz.  Заменив в интеграле переменную интегрирования, получим:    
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Пример 2. Вычислить
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 Решение: пусть  
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 С учетом полученного имеем
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Пример 3.  Вычислить
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Решение: 
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где 
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Пример 4.  Вычислить
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 Решение: сделав замену 
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Пример 5.  Вычислить
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 Решение: этот интеграл решается с помощью формул тригонометрии:
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Поэтому, имеем  
[image: image1110.wmf]ò

ò

+

-

-

=

+

=

C

x

x

dx

x

x

dx

x

x

6

cos

12

1

10

cos

20

1

)

6

sin

10

(sin

2

1

2

cos

8

sin

;

Пример 6. Вычислить  
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Решение:  положим   
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 Пример 7.  Вычислить  
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Решение:   положим    u=lnx,  dv=xdx;  тогда 
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Используя формулу (2),    получим:     
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Задания для практического занятия:

Вариант 1

1. Методом подстановки вычислить: 

а) 
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2.Методом интегрирования по частям  вычислить: 
а) 
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Вариант 2

1. Методом подстановки вычислить: 

а) 
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2. Методом интегрирования по частям  вычислить: 

а) 
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Вариант 3

1. Методом подстановки вычислить: 

а) 
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2. Методом интегрирования по частям  вычислить: 

а) 
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Вариант 4

1. Методом подстановки вычислить: 

а) 
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2. Методом интегрирования по частям  вычислить: 

а) 
[image: image1160.wmf]dx
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Контрольные вопросы

1. Какая  функция называется первообразной для функции 
[image: image1162.wmf])
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b
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x
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2. Что называется неопределенным интегралом функции 
[image: image1163.wmf])
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x

f

на некотором промежутке?

3. Перечислите основные свойства неопределенного интеграла.

4. Перечислите основные табличные интегралы.

5. В чем суть методов подстановки и интегрирования по частям? 

Практическая работа № 15

 «Вычисление определенных интегралов методом непосредственного интегрирования»

Учебная цель:   научиться вычислять определённые интегралы, применяя  метод непосредственного интегрирования

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

      - применять методы дифференциального и интегрального исчисления;

знать: 

- основы дифференциального и интегрального исчисления.

Краткие теоретические и учебно-методические материалы по теме практической работы

         Приращение F (b) – F (a) любой из первообразных функций F (x) + C  функции   f (x) при изменении аргумента от x = a  до  x = b называется определённым интегралом от a до b от  функции   f (x: )                
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Числа a и b называются пределами интегрирования, а – нижним, b – верхним. Отрезок [a;b] называется отрезком интегрирования. Функция  f (x) называется подынтегральной функцией, а переменная x – переменной интегрирования.  Формула (1)  называется формулой Ньютона -  Лейбница.

Геометрический смысл определенного интеграла

   Если интегрируемая на отрезке [a;b] функция f (x) неотрицательна, то определённый интеграл     
[image: image1165.wmf](
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  численно равен площади S   криволинейной трапеции, ограниченной графиком функции   f (x), осью абсцисс и прямыми x = a и x = b :


[image: image1166.png]



Свойства определённого интеграла

 1.  Постоянный множитель можно выносить за знак интеграла: 

                              
[image: image1167.wmf](
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          2.  Определённый интеграл от алгебраической суммы двух непрерывных функций равен  алгебраической сумме их интегралов, т.е.  
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3.    Если a<c<b, то          
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4.   Если функция f (x) неотрицательная на отрезке [a;b], где a<b, то
               
[image: image1170.wmf](
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5.  Если  f (x)≥ g (x) для всех  x 
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 [a;b], где a<b,  то   
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6.  Если   m  и  M – наименьшее и наибольшее значения функции  f (x)  на отрезке [a;b], где a<b,    то   
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7.  (Теорема о среднем). Если функция f (x) непрерывна на отрезке [a;b], то существует точка 
[image: image1174.wmf][
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 такая, что   
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Непосредственное интегрирование предполагает использование основных свойств определенного интеграла и формулы Ньютона – Лейбница. 

Примеры по выполнению практической работы

             Пример 1.  Вычислить 
[image: image1176.wmf]ò
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Решение:  

                  
[image: image1177.png]



Пример 2.  Вычислить 
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Решение:  
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Пример 3.  Вычислить   
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Решение:    
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Задания для практического занятия:

Вариант 1
1.Вычислить методом непосредственного интегрирования:

  1) 
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Вариант 2

              1. Вычислить методом непосредственного интегрирования:

           1) 
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Вариант 3 

        1. Вычислить методом непосредственного интегрирования: 

            1)  
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Вариант 4
              1. Вычислить методом непосредственного интегрирования:

 1) 
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Контрольные вопросы

1. Что называется определенным интегралом,  и в чем его геометрический смысл?

2.  Назовите формулу Ньютона-Лейбница.

3. Перечислите свойства определенного интеграла.

4.  В чем заключается метод непосредственного интегрирования?

Практическая работа № 16

 «Вычисление определенных интегралов методом подстановки и интегрирования  по частям»

Учебная цель:   научиться  вычислять определённые интегралы методом подстановки и методом интегрирования по частям

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

      - применять методы дифференциального и интегрального исчисления;

знать: 

- основы дифференциального и интегрального исчисления.

Краткие теоретические и учебно-методические материалы по теме практической работы

    Метод подстановки  сводит определенный интеграл 
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Примеры по выполнению практической работы

Пример 1.     Вычислить 
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Пример 2. Вычислить  
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Новые пределы интегрирования: 
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Пример 3. Вычислить  
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Решение:  Положим 
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Пример 4. Вычислить 
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Решение: положим u=lnx,    dv=xdx. Тогда 
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Задания для практического занятия:

Вариант 1

 1. Вычислить следующие интегралы методом подстановки:  

 1) 
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           2. Вычислить методом интегрирования по частям:
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Вариант 2

1.  Вычислить следующие интегралы методом подстановки:  

 1) 
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2.Вычислить методом интегрирования по частям:
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Вариант 3 

1.  Вычислить следующие интегралы методом подстановки:  

 1) 
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2.Вычислить методом интегрирования по частям:

 1) 
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Вариант 4
              1. Вычислить следующие интегралы методом подстановки:  

 1) 
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2. Вычислить методом интегрирования по частям:

1) 
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Контрольные вопросы

1. Что называется определенным интегралом,  и в чем его геометрический смысл?

2. Назовите формулу Ньютона-Лейбница.

3. Перечислите свойства определенного интеграла.

4. В чем заключается метод непосредственного интегрирования в определенном интеграле?

5. В чем заключается метод замены переменной интегрирования в определенном интеграле?

Практическая работа № 17
 «Вычисление площадей плоских фигур»

Учебная цель:   научиться вычислять площади плоских фигур с помощью определённого интеграла

Образовательные результаты, заявленные во ФГОС третьего 
поколения:

Студент должен 

уметь: 

      - применять методы дифференциального и интегрального исчисления;

знать: 

- основы дифференциального и интегрального исчисления.

Краткие теоретические и учебно-методические материалы по теме практической работы

            При вычислении площадей плоских фигур с применением определенного интеграла мы рассмотрим следующие случаи.

1. Фигура ограничена непрерывной и неотрицательной на отрезке 
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           2. Фигура ограничена графиком непрерывной и неположительной на отрезке 
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     функции f (x), осью ОХ  и   прямыми 
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 Рассмотрим функцию – f(x). Фигура аА1В1b симметрична фигуре аАВb относительно оси ОХ, а следовательно, их площади S1  и  S равны. Но
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3.   Фигура ограничена осью Ох, прямыми х = а , х = b и графиком функции   f (x), которая непрерывна на отрезке 
[image: image1316.wmf][
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 и меняет свой знак конечное число раз на этом отрезке. В этом случае разбивают отрезок 
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на такие частичные отрезки, на которых функция f (x) знакопостоянна на соответствующих отрезках.  В нашем примере   имеется три таких отрезка:
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Очевидно, что искомая площадь S численно равна алгебраической сумме интегралов, взятых по каждому из полученных отрезков, причем знаки, с которыми эти интегралы входят в алгебраическую сумму, совпадают со знаками функции f (x) на соответствующих отрезках. Так, например, площадь фигуры,   представленной на рисунке , вычисляется по формуле
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4.  Фигура ограничена графиками двух непрерывных на отрезке 
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 функций f(x) и  g(x) и прямыми х = а , х = b,где 
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 (рис. 52) В этом случае искомая площадь S вычисляется по формуле
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5. Фигура ограничена графиками трех и более непрерывных на отрезке 
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 функций. В этом случае стараются искомую площадь представить в виде алгебраической суммы площадей, вычисление каждой из которых сводиться к одному из предыдущих четырех случаев. Так, например, площадь фигуры, изображенной на рисунке 
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вычисляется по формуле       
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Примеры по выполнению практической работы

Пример 1. Вычислить площадь фигуры, ограниченной линиями 
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Решение:  построим графики функций. Применив формулу (1), найдем площадь фигуры
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Пример 2. Вычислить площадь фигуры, ограниченной линиями  у = –х2 – 1, у = 0, х = –1. х = 2.

Решение. Построим графики заданных функций:
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По формуле (2) находим
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Пример 3.  Вычислить площадь фигуры, ограниченной линиями 
y = sin x,  y = 0,  x = -
[image: image1335.wmf]p
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Решение: очевидно, что 
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Пример 4. Вычислить площадь плоской фигуры, ограниченной линиями
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Из рисунка  видно, что искомая площадь  
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Задания для практического занятия:

Вариант 1
              Вычислить площади фигур, ограниченных линиями:
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              Вариант 2

              Вычислить площади фигур, ограниченных линиями:

1) 
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Вариант 3

               Вычислить площади фигур, ограниченных линиями:
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Вариант 4

               Вычислить площади фигур, ограниченных линиями:

1) 
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Контрольные вопросы

1. В чем состоит геометрический смысл определенного интеграла?

2. Перечислите все пять случаев применения определенного интеграла к
вычислению площадей плоских фигур.

Практическая работа № 18

 «Вычисление  объемов и площадей поверхностей тел вращения»

Учебная цель:   научиться вычислять объем и площадь поверхности тела вращения с помощью определенных интегралов

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

      - применять методы дифференциального и интегрального исчисления;

знать: 

- основы дифференциального и интегрального исчисления.

Краткие теоретические и учебно-методические материалы по теме практической работы

Вычисление объема тела вращения

     Объем фигуры, образованной вращением вокруг оси ОХ криволинейной трапеции, 

ограниченной кривой 
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      Аналогично, объем фигуры, образованной вращением вокруг оси ОУ криволинейной трапеции, ограниченной кривой 
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Вычисление площади поверхности фигуры вращения с помощью определенного интеграла

     При вращении дуги АВ плоской кривой y=f(x) вокруг оси Ох образуется поверхность вращения, площадь которой вычисляется по формуле:  
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где а и b—значения независимой переменной х в точках А и В.

Аналогичным образом, при вращении дуги АВ вокруг оси Оу имеем 
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где с и d—значения независимой переменной у в точках А и В.

Примеры по выполнению практической работы

Пример 1.  Вычислить объем фигуры, образованной вращением площади, ограниченной   линиями   
[image: image1391.wmf]x
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Решение: выполним построение плоской фигуры.  При вращении этой фигуры вокруг оси ОХ получим параболоид. Пределы интегрирования  а=0 и b=4. По формуле (4) получим 
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Пример 2. Вычислить объем фигуры, образованной вращением площади, ограниченной   линиями   
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Решение: Выполним построение  плоской фигуры. В силу симметрии фигуры относительно оси Оу возьмем пределы интегрирования от 0 до 3, а затем полученный результат удвоим.  По  формуле (4)  находим
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Пример 3. Найти площадь поверхности шара,  образованного  враще​ниемокружности 
[image: image1396.wmf]2
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Решение:  дифференцируя  уравнение   окружности   
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Подставив значение дифференциала dl в формулу (1) и взяв пределы интегрирования от –r до r, получим    
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Пример 4. Найти площадь поверхности, образованной вращением вокруг оси ОХ дуги окружности 
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Решение: дифференцируя уравнение окружности по х, получим


[image: image1404.wmf])

4

(

;

4

;

0

2

)

4

(

2

-

-

=

-

-

=

=

+

-

x

dx

dy

y

y

x

dx

dy

dx

dy

у

х

.

Тогда


[image: image1405.wmf](

)

(

)

.)

.

(

24

12

12

4

4

36

2

2

1

2

4

2

4

2

4

2

4

2

4

2

2

2

2

2

2

ед

кв

x

dx

dx

x

x

dx

dx

dy

y

y

dx

dx

dy

y

S

p

p

p

p

p

p

=

=

=

=

-

+

-

-

=

÷

ø

ö

ç

è

æ

+

=

÷

ø

ö

ç

è

æ

+

=

ò

ò

ò

ò


Задания для практического занятия:

Вариант 1
1. Вычислить объем фигуры, образованной вращением вокруг оси ОХ

площади, ограниченной линиями 
[image: image1406.wmf]0
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2. Вычислить объем фигуры, образованной вращением вокруг оси ОХ площади, ограниченной линиями:   
[image: image1407.wmf]х
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3. Найти площадь поверхности шарового пояса, образованного вращениемвокруг оси ОХ дуги окружности  
[image: image1408.wmf]16
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4. Найти площадь поверхности, полученной вращением вокруг оси ОХ дуги кривой 
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Вариант 2

1. Вычислить объем фигуры, образованной вращением вокруг оси ОХ

площади, ограниченной линиями 
[image: image1412.wmf]3
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2 . Вычислить объем фигуры, образованной вращением вокруг оси ОХ

площади, ограниченной линиями 
[image: image1413.wmf]0
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3. Найти площадь поверхности шарового пояса, образованного вращением вокруг оси ОХ дуги окружности  
[image: image1414.wmf]25
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4. Найти площадь поверхности, полученной вращением вокруг оси ОХ дуги кривой 
[image: image1416.wmf]ő
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Вариант 3

1. Вычислить объем фигуры, образованной вращением вокруг оси ОХ

площади, ограниченной линиями 
[image: image1418.wmf]0
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2. Вычислить объем фигуры, образованной вращением вокруг оси ОХ

площади, ограниченной линиями  
[image: image1419.wmf];
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3. Найти площадь поверхности шарового пояса, образованного вращением вокруг оси ОХ дуги окружности  
[image: image1420.wmf]25
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4. Найти площадь поверхности, полученной вращением вокруг оси ОХ дуги кривой
[image: image1422.wmf]3
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Вариант 4

1. Вычислить объем фигуры, образованной вращением вокруг оси ОХ
площади, ограниченной линиями 
[image: image1423.wmf];
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2. Вычислить объем фигуры, образованной вращением вокруг оси ОХ

площади, ограниченной линиями  
[image: image1424.wmf]0
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3. Найти площадь поверхности вращения, образованной вращением вокруг оси ОХ дуги параболы
[image: image1425.wmf]х
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4. Найти площадь поверхности вращения, образованной вращением вокруг оси ОХ дуги окружности 
[image: image1427.wmf]4
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Контрольные вопросы

1. В чем состоит геометрический смысл определенного интеграла?

2. Как найти  объем тела, полученного вращением криволинейной трапеции вокруг оси ОХ, ОУ?

3. Как вычислить площадь поверхности вращения с помощью определенного интеграла?

Практическая работа № 19

 «Действия над комплексными числами в алгебраической форме»

Учебная цель:   научиться выполнять действия над комплексными числами в алгебраической форме

Образовательные результаты, заявленные во ФГОС третьего 
поколения:

Студент должен 

уметь: 

- выполнять действия над комплексными числами в разных формах;

-
переходить от одной формы представления комплексных чисел к
другой.

знать: 

-     определение комплексного числа,  геометрическое  представление
комплексных чисел;

· алгебраическую,   тригонометрическую   и   показательную   формы
комплексных чисел.

Краткие теоретические и учебно-методические материалы по теме практической работы

Алгебраическая форма комплексных чисел и операции над ними
            Комплексным числом называется выражение вида    

                                                                        
[image: image1428.wmf]bi

z

+

=

a

  ,                                           (1)

где a и b – действительные числа, а i - некоторый символ, называемый мнимой единицей  и  i² = -1 , т.е. 
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.  В формуле (1) 
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 называется действительной частью, а 
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 - мнимой частью комплексного числа 
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 и обозначается   
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     Операции над комплексными числами, записанными в алгебраической форме, выполняются таким же образом, как и над обычными многочленами, с последующей заменой i²  на –1. 

     Комплексные числа 
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     Суммой комплексных чисел 
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 называется комплексное
число               
[image: image1441.wmf],
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     Разностью комплексных чисел 
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     Произведением комплексных чисел 
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        Комплексное число 
[image: image1448.wmf]0
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 называется нулевым комплексным числом или просто нулём. Легко проверить, что для любого комплексного числа z имеет место 
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 называется противоположным  ему. Легко проверить, что    
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Если 
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 называется сопряжённым числу z. В частности, действительное число 
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 EMBED Equation.3  [image: image1461.wmf]3
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      Частным комплексных чисел 
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 Формула (5) была получена следующим образом.  Заметим, что для двух комплексно сопряженных чисел  имеют место соотношения:
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т.е.  сумма и произведения двух комплексно сопряженных друг другу чисел есть всегда действительное число, в связи с этим, чтобы найти 
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      Число 
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Решение квадратных уравнений с отрицательным дискриминантом.

    Пусть дано квадратное уравнение    
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где 
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Геометрическая интерпретация комплексных чисел.

     Каждое комплексное число 
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 на такой плоскости изображается точкой с координатами 
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Из геометрического толкования комплексных чисел вида  вводятся новые понятия для комплексного числа 
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Аргумент 
[image: image1495.wmf]j

 можно найти по-другому: вычислить 
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, а затем, используя алгебраическую форму записи, установить, в какой четверти находится данное комплексное число. 

Примеры по выполнению практической работы

Пример 1. Найти сумму комплексных чисел 
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Решение: 
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Пример 2. Вычислить 
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Решение: 
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Пример 3. Найти произведение комплексных чисел 
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Решение: 
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Пример 4. Вычислить 
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Решение: 
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Пример 5. Вычислить число 
[image: image1509.wmf]1
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Решение:
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Пример 6. Решить уравнение 
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Решение:    
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Пример 7. Вычислить степени:  
[image: image1515.wmf];
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Решение:
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Задания для практического занятия:

Вариант 1

1.Найти решение уравнения:  
[image: image1517.wmf]0
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2.Вычислить 
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3.Найти модуль и аргумент комплексного числа:    
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4.Вычислить:      
[image: image1527.wmf].
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5. Найти модуль и аргумент комплексного числа:    
[image: image1528.wmf].
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Вариант  2

1.Найти решение уравнения:  
[image: image1529.wmf].
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2.Вычислить 
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3.Найти модуль и аргумент комплексного числа:   
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4.Вычислить:    
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5. Найти модуль и аргумент комплексного числа:   
[image: image1540.wmf]i
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Вариант  3

1.Найти решение уравнения :  
[image: image1541.wmf].
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2.Вычислить 
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3.Найти модуль и аргумент комплексного числа:   
[image: image1550.wmf].
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4.Вычислить:     
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5. Найти модуль и аргумент комплексного числа:   
[image: image1552.wmf]i
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Вариант 4

1.Найти решение уравнения: 
[image: image1553.wmf].
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2.Вычислить 
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[image: image1560.wmf];
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[image: image1561.wmf].
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3.Найти модуль и аргумент комплексного числа:  
[image: image1562.wmf].
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4.Вычислить: 
[image: image1563.wmf].
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5. Найти модуль и аргумент комплексного числа:  
[image: image1564.wmf].
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Контрольные вопросы

1. Что называется комплексным числом? Укажите его алгебраическую форму;

2. Какие действия можно производить с комплексными числами в алгебраической форме?

3. Что называется противоположным, комплексно сопряженным и  обратным числом к числу 
[image: image1565.wmf]bi

z
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4. Как решить квадратное уравнение, если его D<0?

5. Как геометрически можно толковать комплексные числа?

6. Что такое модуль и аргумент комплексного числа?

Практическая работа № 20

 «Действия над комплексными числами в тригонометрической форме»

Учебная цель:   научиться производить действия с комплексными числами в  тригонометрической форме
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

- выполнять действия над комплексными числами в разных формах;

-
переходить от одной формы представления комплексных чисел к
другой

знать: 

-     определение комплексного числа,  геометрическое  представление
комплексных чисел;

· алгебраическую,   тригонометрическую   и   показательную   формы
комплексных чисел.

Краткие теоретические и учебно-методические материалы по теме практической работы

Тригонометрическая форма комплексного числа
      Любое  комплексное число 
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 на комплексной плоскости изображается точкой с координатами 
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 Тогда каждому комплексному числу 
[image: image1569.wmf]bi

a

z

+

=

 можно поставить в соответствие   его модуль 
[image: image1570.wmf]z

z

=

 и аргумент 
[image: image1571.wmf]z

arg

=

j

.

                              
[image: image1572.wmf]2

2

b

a

z

r

+

=

=

              и                   
[image: image1573.wmf]r

a

r

b

=

=

j

j

cos

;

sin

             (1)

Из формул (1) выразим  а  и  b:      
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Подставив  (2) в  (1), можно перейти от алгебраической  формы комплексного числа к новой записи комплексного числа
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Формула (3) называется    тригонометрической формой комплексного числа.  Заметим, что комплексные числа, записанные в тригонометрической форме, равны тогда и только тогда, когда равны их модули, а аргументы отличаются на целое число,
кратное 2л.

Умножение  и деление  комплексных чисел в тригонометрической форме

     Пусть  даны два числа в тригонометрической форме:   
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Тогда их произведение можно найти по формуле:           
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т.е. модуль произведения комплексных чисел равен произведению их модулей, а аргумент произведения равен сумме аргументов сомножителей. Формула (5) имеет место для любого конечного числа сомножителей: если        
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Деление комплексных чисел в тригонометрической форме производится по формуле 
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т.е модуль частного двух комплексных чисел 
[image: image1583.wmf]2
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 равен частному модулей, а аргумент частного – разности аргументов. 
Применяя формулу (6) к частному случаю 
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, найдём тригонометрическую форму обратного числа 
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Возведение в степень комплексных чисел в тригонометрической форме

      Если 
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, то формула (5) принимает вид
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Формула (8) называется формулой Муавра. Она показывает, что для возведения комплексного числа в натуральную степень нужно возвести в эту степень его модуль, а аргумент умножить на показатель степени.  Если 
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Извлечение корня из комплексных чисел в тригонометрической форме

       Корнем n-ой степени, 
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 из числа z  такое комплексное число u, для которого   
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 Операция нахождения корней n-ой степени из комплексного числа z называется извлечением корня n-ой степени из числа z  и результат её обозначается 
[image: image1593.wmf]n
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         Пусть  
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где  
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Примеры по выполнению практической работы

Пример 1. Найти тригонометрическую форму числа 
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Решение: имеем 
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 EMBED Equation.3  [image: image1602.wmf]4
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Пример 2. Найти тригонометрическую форму числа 
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Решение: имеем 
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следовательно, 
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Пример 3. Умножить числа:  
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Решение: 
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Пример 4. Даны числа 
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Найти частное 
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Решение:
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Пример 5. Найти число, обратное к 
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Решение: Согласно формуле (8) получим    
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Пример 6. Вычислить 
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Решение: чтобы воспользоваться формулой Муавра, найдём тригонометрическую форму числа 
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Пример 7. Вычислить  
[image: image1622.wmf]6
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Решение: имеем:  
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где к = 0,1,2,3,4,5. Тогда получаем
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     Геометрическая интерпретация корней 
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 дана на рисунке, откуда видно, что числа изображаются вершинами правильного шестиугольника, вписанного в окружность радиусом 
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Пример 8.  Найти  
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Решение:
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 Полагая 
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Пример 9. Найти  
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Решение:
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Полагая, 
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Задания для практического занятия:

Вариант 1

1.  Привести число 
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 в тригонометрическую форму;

2. Представить в алгебраической форме число 
[image: image1649.wmf])
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3. Выполнить умножение комплексных чисел 
[image: image1650.wmf]2
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[image: image1651.wmf])
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4. Выполнить деление комплексных чисел 
[image: image1652.wmf]:
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[image: image1653.wmf])
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5. Вычислить, используя  формулу Муавра:  
[image: image1654.wmf]4
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6. Извлечь  корень из комплексного числа 
[image: image1655.wmf]3
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Вариант 2

1.  Привести число
[image: image1656.wmf]i
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 в тригонометрическую форму;

2. Представить в алгебраической форме число 
[image: image1657.wmf])
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3. Выполнить умножение комплексных чисел 
[image: image1658.wmf]2
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[image: image1659.wmf])
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4. Выполнить деление комплексных чисел 
[image: image1660.wmf]:
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[image: image1661.wmf])
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5. Вычислить, используя  формулу Муавра:  
[image: image1662.wmf](
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6. Извлечь  корень из комплексного числа 
[image: image1663.wmf]3
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Вариант 3

1.  Привести число 
[image: image1664.wmf]i
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в тригонометрическую форму;

2. Представить в алгебраической форме число 
[image: image1665.wmf])
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3. Выполнить умножение комплексных чисел 
[image: image1666.wmf]2
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4. Выполнить деление комплексных чисел 
[image: image1668.wmf]:

2

1

z

z


      
[image: image1669.wmf])
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5. Вычислить, используя  формулу Муавра: 
[image: image1670.wmf](
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6. Извлечь  корень из комплексного числа 
[image: image1671.wmf]3
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Вариант 4

1.  Привести число 
[image: image1672.wmf]i
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в тригонометрическую форму;

2. Представить в алгебраической форме число 
[image: image1673.wmf])
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3. Выполнить умножение комплексных чисел 
[image: image1674.wmf]2
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[image: image1675.wmf])

78

sin

78

(cos

6

;

)

42

sin

42

(cos

6

0

0

2

0

0

1

i

z

i

z

+

=

+

=


4. Выполнить деление комплексных чисел 
[image: image1676.wmf]:
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[image: image1677.wmf]0

0

2

0

0

1

100

sin

100

(cos

10

;

)

130

sin

130

(cos

5

i

z

i

z

+

=

+

=

;

5. Вычислить, используя  формулу Муавра:   
[image: image1678.wmf]6
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6. Извлечь  корень из комплексного числа 
[image: image1679.wmf]3
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Контрольные вопросы

1. Назовите тригонометрическую форму комплексного числа.
2. Какие операции  над комплексными числами в тригонометрической форме вы знаете?    Перечислите формулы.

3. Назовите формулу Муавра.

Практическая работа № 21

 «Действия над комплексными числами в показательной форме»

Учебная цель:   научиться производить действия с комплексными числами в  показательной  форме
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

- выполнять действия над комплексными числами в разных формах;

-
переходить от одной формы представления комплексных чисел к
другой.

знать: 

-     определение комплексного числа,  геометрическое  представление
комплексных чисел;

· алгебраическую,   тригонометрическую   и   показательную   формы комплексных чисел.

Краткие теоретические и учебно-методические материалы по теме практической работы

Показательная форма комплексных чисел

     Рассматривая комплексные числа вида 
[image: image1680.wmf](
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 и комплекснозначные функции вида 
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 Л. Эйлер  заметил,   что относительно операций умножения и дифференцирования эти выражения    имеют одни и те же свойства, т.е. они представляют модели одной и той же логической структуры:
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[image: image1686.wmf](
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       Таким образом, выражения 
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 имеют одну и ту же логическую сущность, в связи с этим Эйлер предложил формулу
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                      (1)

которая  теперь известна  как   формула Эйлера.  

            Пусть дано комплексное число в тригонометрической форме  
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Применяя  формулу Эйлера, получим 
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(2)

которая  называется показательной формой комплексного числа. 
Действия над комплексными числами в показательной форме

Пусть даны два комплексных числа в показательной форме
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Тогда их произведение и частное могут быть найдены по формулам:
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)

2

1

2

1

2

1

2

1

2

1

j

j

j

j

+

=

×

=

i

i

i

e

r

r

e

r

e

r

z

z




(3)

                                            
[image: image1697.wmf](
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Пусть
[image: image1698.wmf]j

i

re

z

=

; тогда  операции возведения в степень и извлечения корня выполняются по формулам: 
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где 
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Примеры по выполнению практической работы

Пример 1. Найти показательную форму чисел:  1) 
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Решение:

1) Находим 
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2) Находим 
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Пример 2. Найти алгебраическую форму чисел:

                 1) 
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Решение:

1) Имеем    
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2) Имеем   
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3) Имеем  
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Пример 3. Найти произведение 
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 комплексных чисел и

написать результаты в алгебраической форме:   а) 
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Решение:

а)
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Пример 4. Вычислить 
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Решение:
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[image: image1725.wmf].
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Задания для практического занятия:

Вариант 1

1. Дано число     
[image: image1729.wmf]i
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2. Привести число 
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3. Найти произведение чисел 
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4. Найти частное чисел 
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5. Привести число 
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вычислить 
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6. Вычислить 
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Вариант 2

1. Дано число   
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 . Привести его в показательную форму;

2. Привести число 
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3. Найти произведение чисел 
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4. Найти частное чисел 
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5. Привести число 
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вычислить 
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6. Вычислить 
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Вариант 3

1. Дано число    
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2. Привести число 
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3. Найти произведение чисел 
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4. Найти частное чисел 
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5. Привести число 
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 вычислить 
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6. Вычислить 
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Вариант 4

1. Дано число   
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2. Привести число 
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3. Найти произведение чисел 
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4. Найти частное чисел 
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5. Привести число 
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вычислить 
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6. Вычислить 
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Контрольные вопросы

1. Назовите формулу Эйлера;

2. Назовите  показательную форму комплексного числа;

         3. Какие операции  над комплексными числами в показательной форме вы знаете?
Перечислите формулы.
Практическая работа № 22

 «Решение дифференциальных уравнений первого порядка с разделяющимися переменными»

Учебная цель:   научиться решать дифференциальные уравнения первого порядка с разделяющимися переменными.     

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

      - решать дифференциальные уравнения;

знать: 

           - основы дифференциального и интегрального исчисления.

Краткие теоретические и учебно-методические материалы по теме практической работы

Определение дифференциального уравнения 1-го порядка. Общее и частное решение

     Дифференциальным уравнением первого порядка называется уравнение вида:

                                                         F (x, y, y( ) = 0                                        (1)              

т.е. содержит независимую переменную х, искомую функцию у(х) и её производную у((х). Разрешая уравнение (1), если это возможно, относительно производной у( получим 

                                                      у( = f (х,у)                                              (2)  
Иногда уравнения (1), (2) записывают в дифференциалах: 
                                            P(х, у) dx + Q(x, y) dy = 0                                (3)      
      Дифференциальное уравнение имеет, вообще говоря, бесконечное множество решений.  Всякое отдельно взятое решение дифференциального уравнения называется его частным решением.  Для многих дифференциальных уравнений первого порядка общее решение можно задать формулой вида:

                                                        y = y(x, C)                                           (4)
где С  - произвольная постоянная такая, что при любом С функция (4) является частным решением  дифференциального уравнения.

     С геометрической точки зрения совокупность всех решений дифференциального уравнения представляет собой семейство кривых, называемых интегральными кривыми, а каждое частное решение представляет собой отдельную интегральную кривую. Иногда не удаётся получить решения дифференциального уравнения в явной форме, т.е в виде

у = у(х, С), а получают их в неявной форме, т.е. решение задаётся формулой вида:

                                                  Ф (y, x, C) = 0                                           (5)  
Выражение типа Ф (х, у, С) = 0   в этом случае называют интегралом  (частным, общим) дифференциального уравнения.                    

Задача Коши

     В случае дифференциального уравнения первого порядка задача Коши формулируется следующим образом: найти решение у = у(х) уравнения 
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[image: image1779.wmf]0

0

,

y

x

- заданные числа.  Задача Коши кратко записывается так:   
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 = f (x, y);                                                     (6) 
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                                             у = у
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   при х=х
[image: image1783.wmf]0

.
     Геометрически решение, удовлетворяющее начальному условию
 у (х
[image: image1784.wmf]0

)= у
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,   представляет интегральную кривую, проходящую через данную точку (х
[image: image1786.wmf]0

; у
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).  

Дифференциальные уравнения 1-го порядка  с разделяющимися   переменными

      Дифференциальное уравнение (2) называется   уравнением с разделяющимися переменными, если имеет следующий вид:                                              
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В предположении, что 
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, уравнение с разделяющимися переменными (7) можно переписать в виде (разделить переменные):   
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)

(

)

(

1

2

dx

x

f

y

f

dy

=

                                      (8)                

Уравнение вида (8) называется уравнением с разделёнными переменными.

Теорема 1. Если существуют интегралы 
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, то общий интеграл уравнения с разделёнными переменными (8) задаётся уравнением
                                                        
[image: image1793.wmf]C

x

F

y

F

+

=

)

(

)

(

1

2

,                                     (9)

где 
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 - некоторые первообразные соответственно функций 
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         При решении дифференциальных уравнений с разделяющимися переменными можно   руководствоваться следующим алгоритмом:

1) разделить переменные (с учётом условий, когда это можно делать);

2) проинтегрировать почленно полученное уравнение с разделёнными переменными;
3) найти его общий интеграл уравнения;
4)   выяснить, имеет ли уравнение (5) решения, не получающиеся из общего интеграла;

4) найти частный интеграл (или решение), удовлетворяющий начальным условиям   (в случае задачи Коши).

Пример по выполнению практической работы

Пример 1.  Найти частное решение уравнения:


                                        2уу( = 1 – 3х²;  

                                        у
[image: image1799.wmf]0

 = 3    при   х
[image: image1800.wmf]0

 = 0;

Решение:  это уравнение с разделяющимися переменными. Представим его в дифференциалах.  Учитывая, что 
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  Интегрируя обе части последнего равенства, найдём 
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 т.е.   у²=х-х³+С.   Подставив начальные значения х
[image: image1805.wmf]0

=1, у
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=3, найдём С:   9=1-1+С, т.е. С=9.  Следовательно, искомый частный интеграл    будет   у²=х---х³+9,   или   х³+y² – x-9 = 0.

Задания для практического занятия:

Вариант 1
1.   Найти общее решение дифференциальных уравнений: 

              а)   
[image: image1807.wmf](
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2.  Решить задачу Коши (найти частные решения дифференциальных

уравнений):

                          а)
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Вариант 2

1.   Найти общее решение дифференциальных уравнений:

            а)  
[image: image1811.wmf]dy

y

хdx

2

3

2

=

;                         б) 
[image: image1812.wmf](

)

0

4

9

2

2

=

+

-

-

dy

x

у

dx

у

х


2.   Решить задачу Коши (найти частное решение дифференциальных уравнений):

      а) 
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Вариант 3

              1.   Найти общее решение дифференциальных уравнений

                          а)  
[image: image1815.wmf]0
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[image: image1816.wmf]0

sin

sin

cos

cos

=

-

ydy

x

ydx

x

;

2.   Решить задачу Коши (найти частное решение дифференциальных уравнений):

                         а)  
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Вариант 4

              1. Найти общее решение дифференциальных уравнений:

                         а) 
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2.   Решить задачу Коши (найти частное решение дифференциальных уравнений):

                     а)  
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Контрольные вопросы

1.Что называется дифференциальным уравнением первого порядка?

2. Что такое общее и частное решения дифференциального уравнения первого порядка?

3. Как ставится задача Коши  первого порядка?

              4. Какие дифференциальные уравнения первого порядка называются
уравнениями с разделяющимися переменными и как они решаются?

Практическая работа № 23

 «Решение линейных дифференциальных уравнений 1-го порядка»

Учебная цель:   научиться решать линейные дифференциальные уравнения первого порядка.     

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

      - решать дифференциальные уравнения;

знать: 

- основы дифференциального и интегрального исчисления.

Краткие теоретические и учебно-методические материалы по теме практической работы

Линейные дифференциальные уравнения 1-го порядка

                Уравнение вида    

                                            
[image: image1823.wmf](
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где f(x) и 
[image: image1824.wmf]j

(х)-функции от х, называется линейным дифференциальным уравнением первого порядка. В частном случае f(x) и 
[image: image1825.wmf]j

 (х) могут быть постоянными величинами.

Это уравнение приводится к уравнению с разделяющимися переменными с помощью подстановки 

                                                     y = uv,                                                    (2)

где u и  v  - новые функции от x.

Пример по выполнению практической работы

Пример 1.  Найти общее решение уравнения: 
[image: image1826.wmf](
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Это   линейное   уравнение:   здесь  f(х)= — 2/(x+1),   
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 в данное уравнение, получим        
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или                 
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Так как одну из вспомогательных функций u или v  можно выбрать произвольно, то в качестве  v  возьмем одно из частных решений уравнения
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Разделив в этом уравнении переменные и интегрируя, имеем
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(произвольную постоянную С принимаем равной нулю, так как находим одно из частных решений).   Подставим теперь выражение для   v  в уравнение (*); тогда получим  уравнение  
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   или       
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Отсюда находим
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Зная u и v, теперь получаем общее решение данного уравнения:
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Пример 2. Найти частное решение уравнения 
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Решение: разделив все члены данного уравнения на cos xdx, получим уравнение
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которое является линейным. Положим y = uv; тогда    
[image: image1841.wmf]v

u

v

u

у

¢

+

¢

=

¢


Подставив  выражения для у и 
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 в уравнение (*), имеем
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или                                                    
[image: image1844.wmf]x

vtgx

v

u

v

u

cos

1

)

(

=

+

¢

+

¢

.          (*)

Для отыскания   получаем уравнение v:
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Подставляя выражение для  v   в уравнение (*), имеем

                                    
[image: image1847.wmf].
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Следовательно, общее решение данного уравнения записывается так:
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Используя начальные условия  у=1, х=0, имеем    
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 Таким образом, искомое частное решение имеет вид 
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Задания для практического занятия:

Вариант 1

1. Найти общее решение линейного дифференциального уравнения первого порядка

      а)    
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2. Найти частное решение линейного дифференциального уравнения:

   а)  
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Вариант 2

1. Найти общее решение линейного дифференциального уравнения первого порядка

             а)  
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2.  Найти частное решение линейного дифференциального уравнения:

            а)  
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Вариант 3

1. Найти общее решение линейного дифференциального уравнения первого порядка:

             а)     
[image: image1860.wmf]x
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2.  Найти частное решение линейного дифференциального уравнения:
а)     
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Вариант 4

1. Найти общее решение линейного дифференциального уравнения первого порядка:
    а)    
[image: image1864.wmf]x
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2. Найти частное решение линейного дифференциального уравнения:
    а)    
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Контрольные вопросы

1.Дайте определение линейного дифференциального уравнения 1-го порядка;

2.Опишите алгоритм решения линейного дифференциального уравнения 1-го 
порядка.

Практическая работа № 24

 «Решение однородных  дифференциальных  уравнений 1-го порядка»

Учебная цель:   научиться решать однородные дифференциальные уравнения первого порядка.     

Образовательные результаты, заявленные во ФГОС третьего
 поколения:

Студент должен 

уметь: 

      - решать дифференциальные уравнения;

знать: 

          - основы дифференциального и интегрального исчисления

Краткие теоретические и учебно-методические материалы по теме практической работы

Однородные дифференциальные уравнения первого порядка

      Функция g(x,y) называется однородной функцией к-то измерения (к-й степени), если при любом t ( кроме, быть может, t=0 ) имеет место тождество:

                                              
[image: image1868.wmf])

,

(

)

,

(

y

x

g

t

ty

tx

g

k

=

.                                         (1)

Например, 
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        Дифференциальное уравнение первого порядка   y(=f(x,y)   называется однородным, если f(x,y) – однородная функция нулевого измерения.  Его можно представить в виде              

                                       P(x,y)dx + Q(x,y)dy = 0,                                        (2)

где Р(х,у) и Q(x,y) – однородные функции одинакового измерения.

        Однородное дифференциальное уравнение приводится к дифференциальному уравнению с разделяющимися переменными подстановкой:    

                                                  y=zx                                                          (3)                            

где z=z(x) – новая неизвестная функция.

Примеры по выполнению практической работы

Пример 1. Найти решение уравнения    (x²-2y²)dx + 2xy dy = 0.

Решение: В данном уравнении функции Р(х,у) = х² - 2у², Q(x,y) = 2xy – однородные функции второго измерения, следовательно, данное уравнение является однородным. Положим у = zx, откуда dy =zdx + xdz. Подставляем эти выражения y и dy в данное уравнение:   x² dx – 2(zx)² dx + 2xzx(zdx + xdz) = 0,  
                    x² dx – 2z²x² dx + 2z² x² dx + 2zx³dz = 0,  или     dx + 2zx dz = 0 . 
 Разделяем переменные (считая х ( 0):   
[image: image1871.wmf].
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  Интегрируем почленно это уравнение :  
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, откуда   
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Пример 2.   Найти частное решение уравнения   
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Решение: запишем данное уравнение в виде   (x² + y²)dx – 2xy dy = 0. Легко можно убедиться в том, что оно однородно.    Положим   y = zx,     откуда      dy = zdx + xdz. 
 Подставляя значения    y  и  dy  в уравнение, имеем: 
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Интегрируя, получаем    
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Подставив в найденное решение начальные условия, найдём  
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Итак, искомое частное решение будет 
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 или x² - y² + 3x = 0.

Задания для практического занятия:

Вариант 1

        1. Найти общее решение однородного дифференциального уравнения

          а) 
[image: image1885.wmf](

)

0

=

+

+

ydx

dy

у

х

;            б) 
[image: image1886.wmf]2

2

ó

ő

ó

y

ő

+

=

-

¢


2. Найти частное решение однородного дифференциального уравнения:    

          а)  
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Вариант 2

1.Найти общее решение однородного дифференциального уравнения:
          а) 
[image: image1889.wmf](
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                2. Найти частное решение однородного дифференциального уравнения: 

             а)  
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        б)  
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Вариант 3

 1.Найти общее решение однородного дифференциального уравнения:     

             а)     
[image: image1893.wmf](
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 2. Найти частное решение однородного дифференциального уравнения:   

                а) 
[image: image1895.wmf](

)

î

í

ì

=

=

=

-

+

1

,

1

0

2

2

х

если

y

dy

xy

x

dx

y

;             б)  
[image: image1896.wmf]1

1

,

0

)

2

(

2

2

=

=

=

¢

+

-

+

ő

ďđč

ó

y

őó

ő

ó

őó


Вариант 4

     1.Найти общее решение однородного дифференциального уравнения

             а)  
[image: image1897.wmf](
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      2. Найти частное решение однородного дифференциального уравнения

             а) 
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Контрольные вопросы

1. Дайте определение однородной функции к-того измерения.

2. Какие  дифференциальные уравнения первого порядка называются однородными?

3. Опишите алгоритм решения однородных дифференциальных уравнений первого порядка.
Практическая работа № 25

 «Решение дифференциальных уравнений второго порядка»

Учебная цель:   научиться  решать дифференциальные  уравнения второго порядка       

Образовательные результаты, заявленные во ФГОС третьего
 поколения:

Студент должен 

уметь: 

      - решать дифференциальные уравнения;

знать: 

          - основы дифференциального и интегрального исчисления

Краткие теоретические и учебно-методические материалы по теме практической работы

        Дифференциальные уравнения второго порядка  в общем случае записывается в виде:

                                     
[image: image1901.wmf].
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или, если это возможно, в разрешённом относительно у'' виде
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    Говорят, что формула 
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 представляет общее решение дифференциального уравнения второго порядка (1) или (2), если для любых значений 
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        Для дифференциальных уравнений второго порядка задача Коши формулируется следующим образом: найти решение у = y(x) уравнения 
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 удовлетворяющее начальным условиям 
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где 
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0

0

,

,

y

y

x

¢

 - заданные числа. Геометрически общее решение уравнения (1) или (2) представляет собой семейство интегральных кривых, а решение, удовлетворяющее начальным условиям 
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, представляет интегральную кривую, проходящую через данную точку 
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 в данном направлении – угловой коэффициент касательной к интегральной кривой (графику решения y = y(x)), проведённой в точке  
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      Уравнения этого вида называются уравнениями, допускающими понижение порядка и  решаются двукратным интегрированием: полагаем  
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  где F(x) – одна из первообразных для функции f(x). Так как   р = у',то    
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.  Отсюда, интегрируя ещё раз, находим, как нетрудно проверить, общее решение уравнения  (4)   (в области, где существуют рассматриваемые интегралы):   
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             Уравнение вида         
[image: image1932.wmf]0
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где 
[image: image1933.wmf]2
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 - действительные числа 
[image: image1934.wmf])
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, называется линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами.   Чтобы решить уравнение (5), нужно решить характеристическое уравнение:
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                                       (6)

При решении характеристического уравнения (6) возможны три случая, в зависимости от которых строится общее решение данного дифференциального уравнения (5)

	Корни уравнения (6)
	Частные решения уравнения (5)
	Общее решение уравнения (5)

	Действительные и различные: 
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	Равные: 
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	Комплексно  сопряжённые: 
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Примеры по выполнению практической работы

Пример 1. Найти общее решение уравнения 
[image: image1945.wmf].
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Решение: положим 
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[image: image1953.wmf].
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 Интегрируя второй раз, имеем общее решение:  
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Пример 2. Дана задача Коши:
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Решение:  Положим 
[image: image1957.wmf],
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 - общее решение.  Наложим  начальные условия. Тогда  
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. Отсюда имеем, что  
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Значит, частное решение следующее:   
[image: image1968.wmf].
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Пример  3. Найти общее решение уравнений: 

                           а)
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Решение: а) Составим характеристическое уравнение:  
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б) Составим характеристическое уравнение:  
[image: image1975.wmf]0
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 EMBED Equation.3  [image: image1977.wmf]3
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Пример 4. Найти решение задачи Коши: 
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Решение: составим характеристическое уравнение:  
[image: image1981.wmf]0

5

4

2

=

+

-

k

k

. Решая его, получим 
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 Вычислим производную     
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 - частное решение.

Задания для практического занятия:

Вариант 1
1.Найти общее решение дифференциального уравнения:  
[image: image1990.wmf].
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2.Решить задачу Коши: 
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3. Ускорение тела, движущегося прямолинейно, изменяется по закону 
[image: image1992.wmf]1
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  (ускорение - м/с2, время - сек). Начальное положение тела 
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4.  Найти общее дифференциального уравнения: 
[image: image1995.wmf].
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5 .Решить задачу Коши:  
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6. Решить задачу Коши:  
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Вариант 2
1.Найти общее решение дифференциального уравнения:  
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2.Решить задачу Коши:   
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3. Из семейства интегральных кривых уравнения 
[image: image2000.wmf]2
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выделить ту, которая в точке(1;1) имеет касательную с угловым коэффициентом,  равным 4;

4.Найти общее решение  дифференциального уравнения: 
[image: image2001.wmf].
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5.Решить задачу Коши:  
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6. Решить задачу Коши:  
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Вариант 3
1.Найти общее решение дифференциального уравнения:  
[image: image2004.wmf]1
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2.Решить задачу Коши:  
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3. Из семейства интегральных кривых уравнения 
[image: image2006.wmf])

1

(

6

х

у

-

=

¢

¢

 выделить ту, которая в точке (1; 5) имеет касательную с углом наклона к оси ОХ, равным 
[image: image2007.wmf]4
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4.Найти общее решение  дифференциального уравнения:  
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5.Решить задачу Коши:  
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6.Решить задачу Коши:  
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Вариант 4
1.Найти общее решение дифференциального уравнения: 
                           
[image: image2011.wmf]2
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2.Решить задачу Коши:  
[image: image2012.wmf](
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3. Ускорение тела, движущегося прямолинейно, изменяется по закону 
[image: image2013.wmf]4
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  (ускорение - м/с2, время - сек). Найти закон движения тела и путь, пройденный за 5секунд; если через 2 секунды после начала движения  
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4.Найти общее решение дифференциального уравнения:  
[image: image2015.wmf].
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5.Решить задачу Коши:  
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6. Решить задачу Коши:  
[image: image2017.wmf]î
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Контрольные вопросы

1. Назовите общий вид дифференциальных уравнений второго

порядка. Дайте определение  общего и частного решения дифференциального уравнения второго порядка?

2.   Сформулируйте задачу Коши второго порядка.
3. Как решается  дифференциальное уравнение второго порядка,

допускающее понижение степени?

4. Дайте определение  линейного однородного дифференциального
уравнения второго порядка? Опишите алгоритм его решения. 
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